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Abstract
The cornerstone of thin-film flow modeling is the Reynolds equation—a lower-dimensional representation of the Navier–
Stokes equation. The derivation of the Reynolds equation is based on explicit assumptions about the constitutive behavior 
of the fluid that prohibit applications in multiscale scenarios based on measured or atomistically simulated data. Here, we 
present a method that treats the macroscopic flow evolution and the calculation of local cross-film stresses as separate yet 
coupled problems—the so-called macro and micro problem. The macro problem considers mass and momentum balance for 
compressible fluids in a height-averaged sense and is solved using a time-explicit finite-volume scheme. Analytical solutions 
for the micro problem are derived for common constitutive laws and implemented into the Height-averaged Navier–Stokes 
(HANS) solver. We demonstrate the validity of our solver on examples, including mass-conserving cavitation, inertial effects, 
wall slip, and non-Newtonian fluids. The presented method is not limited to these fixed-form relations and may therefore be 
useful for testing constitutive relations obtained from experiment or simulation.

Keywords Fluid mechanics methods · Hydrodynamic lubrication · Cavitation in hydrodynamics · Compressibility in 
hydrodynamics

1 Introduction

Although the fundamental equation for hydrodynamic 
lubrication was derived by Reynolds [1] almost 140 years 
ago, accurate descriptions of thin-film fluid flow are still a 
research topic of ongoing interest. Major challenges in mod-
eling arise in elastohydrodynamic lubrication (EHL), where 
a plethora of effects, such as non-Newtonian fluid behavior, 

surface roughness, wall slip, or cavitation, has to be con-
sidered. An extensive overview of the field of EHL is given 
in the review articles by Lugt and Morales-Espejel [2] and 
Gropper et al. [3], the latter focusing on textured surfaces.

The derivation of the Reynolds equation is based on an 
asymptotic analysis of the incompressible Navier–Stokes 
equation under the assumption that the gap height is small 
compared to the lateral dimensions. As a result, inertial and 
body force terms can be neglected and the fluid pressure 
does not depend on the gap height coordinate. This allows 
integration of the momentum equations in the gap height 
coordinate to obtain the flow velocity profiles. Integration 
of the mass balance using these velocity profiles leads to 
the Reynolds equation for incompressible and isoviscous 
fluids [4].

However, fluid compressibility and pressure-dependent 
viscosity cannot be ignored under severe loading conditions, 
such as in EHL contacts. It is therefore common practice to 
introduce constitutive relations for the pressure-dependent 
density and viscosity to the asymptotic analysis a posteriori. 
Yet, this can lead to wrong predictions for piezoviscous flu-
ids, where the viscosity strongly depends on pressure [5–7].

Recently, Almqvist et al. [8] presented a compressible 
Reynolds equation for pressure–density relations that take 
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the form of a power law. This includes the isothermal ideal 
gas law, the constant bulk modulus equations of state, as 
well as the Dowson–Higginson equation [9] for mineral base 
oils. They found that for weakly compressible fluids, lower-
dimensional formulations of the Navier–Stokes equations 
can be derived and that inertia and body force terms may be 
neglected based on the thin-film assumption. However, for the 
ideal gas, inertia and body force terms do not automatically 
vanish, which is why the additional assumptions that these 
terms are negligibly small have to be made.

In this paper, we present a novel method that requires no a 
priori assumptions on the form of the constitutive equations. 
Our splitting approach for the conserved variables in the 
three-dimensional mass and momentum balance leads to two 
separate problems: a macro problem, which describes the time 
evolution of height-averaged variables in two spatial dimen-
sions, and a micro problem, which determines the local stress 
state given the macroscopic flow and boundary conditions. 
The solution procedure for the macro problem is therefore 
independent of the type of constitutive equation used in the 
micro problem.

We demonstrate the validity of our method by solving the 
micro problem for Newtonian and generalized Newtonian flu-
ids and compare the results from our transient finite-volume 
implementation with various Reynolds-based solutions from 
the literature. Moreover, the formulation in terms of conserved 
variables allows a flexible implementation of cavitation mod-
els through the equation of state. We also demonstrate Navier 
slip boundary conditions for the investigation of lubrication 
with heterogeneous surface wettability.

2  Governing Equations

We start with the local form of mass and momentum balance, 
which is given by the partial differential equation

where q denotes the 4-vector of densities of conserved vari-
ables (mass and momentum) and � (q) denotes the corre-
sponding flux functions, represented by a 4 × 3 matrix

where � is the density. Note that the divergence operator in 
Eq. (1) acts on the column index [div�]i = �jAij . The first 
row of �  contains the components of the mass flux vec-
tor j⃗  , representing mass transport. Momentum transport 
is encoded in the convective acceleration term (⃗j⊗ j⃗)∕𝜌 , 
where ⊗ defines the outer product between two vec-
tors as [a⃗⊗ b⃗]ij = aibj , and the pressure term p1 , where 
1 denotes the 3 × 3 unit matrix. Note that here and in the 

(1)�tq = −div� (q),

(2)q =

(
𝜌

j⃗

)
, � (q) =

(
j⃗

1

𝜌
(⃗j⊗ j⃗) + p1 − 𝜏(q)

)
,

following we use arrows (e.g., j⃗  ) for tensors of rank 1 (rep-
resented as Cartesian 3-vectors), underlines (e.g., � ) for ten-
sors of rank 2 (represented as 3 × 3 matrices), bold font (e.g., 
q ) for 4-vectors, and open fonts (e.g., �  ) for 4 × 3 matrices.

In a compressible fluid, pressure is defined through the 
equation of state (EOS). Here, we consider only isothermal 
conditions such that the energy equation can be omitted and 
the EOS is given by the pressure–density relation p = p(�) . 
Finally, the viscous stress tensor � is a function of the con-
served variables, which shall not be further specified at this 
point.

Let us now assume that a general solution to Eq. (1) can be 
split into a time-dependent macro solution �̄ , which is obtained 
by averaging the balance equations over the gap height (see 
Sect. 2.1), and a stationary micro solution �� that resolves the 
conserved variables in the gap height coordinate locally (see 
Sect. 2.3). We can then formally write

The implication of this splitting will become evident in the 
solution of the micro problem.

In the following, we treat the solution of the macro and 
micro problem separately—a situation which is comparable to 
multiscale simulations, where a more accurate method is used 
to obtain a “micro solution” which governs the coarser method 
in an either sequential or concurrent manner.

2.1  Macro Problem

To arrive at a two-dimensional description we take an average 
of Eq. (1) in z-direction

where f i denotes the i-th column of the flux function matrix 
�  (i.e., the flux in direction i), h1(x1, y1) and h2(x2, y2) are 
the height profiles of the lower and upper surface, respec-
tively, and their difference is denoted with h as shown in 
Fig. 1a. Note that these profiles are expressed in coordinate 
systems that are attached to the walls, which move rela-
tive to the global reference frame with constant velocities 
�1 = (U1,V1, 0)

⊤ and �2 = (U2,V2, 0)
⊤.

Applying the Leibniz integral rule for differentiation under 
the integral sign and the product rule, the l.h.s. of Eq. (4) reads

and similarly, for the first term on the r.h.s of Eq. (4), we 
obtain

(3)�(x, y, z, t) = �̄(x, y, t) + 𝛿�(z).

(4)
1

h ∫
h2

h1

�tqdz = −
1

h ∫
h2

h1

(�xf x + �yf y + �zf z)dz,

(5)
∫

h2

h1

𝜕tqdz = 𝜕t ∫
h2

h1

qdz − q|z=h2
dh2

dt
+ q|z=h1

dh1

dt

= h𝜕tq̄ + (q̄ − q|z=h2)
dh2

dt
− (q̄ − q|z=h1)

dh1

dt
,
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where overbars denote height averages �̄� =
1

h
∫ h2
h1

𝜙dz (see 
Appendix A for more details). The second term of Eq. (4) is 
identical but has x replaced by y. The third term under the 
integral on the r.h.s. of Eq. (4) can be evaluated directly at 
the fluid-wall boundaries

Hence, the averaged scheme is composed of a two-dimen-
sional divergence operator acting on height-averaged flux 
functions and of terms containing both averaged and unaver-
aged flux functions, the latter evaluated at the top and bottom 
walls. The terms outside of the divergence operator can be 
regarded as geometrical source terms due to the reduction 
of dimensionality.

The averaged scheme reads

with

(6)

∫
h2

h1

𝜕xf xdz = 𝜕x ∫
h2

h1

f xdz − f x|z=h2
𝜕h2

𝜕x
+ f x|z=h1

𝜕h1

𝜕x

= h𝜕x f̄ x + (f̄ x − f x|z=h2)
𝜕h2

𝜕x
− (f̄ x − f x|z=h1)

𝜕h1

𝜕x
,

(7)
1

h ∫
h2

h1

�zf zdz =
1

h

(
f z|z=h2 − f z|z=h1

)
.

(8)𝜕tq̄ = −𝜕x f̄ x − 𝜕y f̄ y − s,

The total time derivative for the upper ( i = 2 ) and lower 
( i = 1 ) rigid surfaces can be written as

Without loss of generality, we assume that the lower wall is 
flat ( h1 = const. ) and the upper wall is stationary ( �2 = � ). 
Then, the expression for the source term simplifies signifi-
cantly to

We use the simplified source term for the numerical tests 
presented in Sect. 4, but more complicated boundary condi-
tions are generally possible. Hence, for flat channels, where 
the gradients of the lower wall disappear, the source term 
only consists of momentum flux contributions in z-direction 
evaluated at the upper and lower wall, respectively.

The height-averaged scheme that solves the macro prob-
lem is entirely formulated in terms of the densities of con-
served variables and does not contain any a priori assump-
tion about the constitutive behavior of the lubricant which 
is encoded in the flux function through the equation of state 
p(�) and the viscous stress tensor �(�) . The functional form 
of the flux is obtained from the micro problem discussed in 
Sect. 2.3.

2.2  Numerical Solution of the Macro Problem

We use a finite-volume discretization of the two-dimensional 
domain with an explicit time integration scheme to solve 
Eq. (8). MacCormack’s [10] method is easy to implement 
and including source terms into the predictor–corrector 
scheme is straightforward. The discretized version of the 
system reads 

(9)

s =
1

h

[
𝜕h2

𝜕x
(f̄ x − f x|z=h2) −

𝜕h1

𝜕x
(f̄ x − f x|z=h1)

+
𝜕h2

𝜕y
(f̄ y − f y|z=h2) −

𝜕h1

𝜕y
(f̄ y − f y|z=h1)

−
dh2

dt
(q̄ − q|z=h2) +

dh1

dt
(q̄ − q|z=h1) + f z|z=h2 − f z|z=h1

]
.

(10)
dhi

dt
=

�hi

�x
Ui +

�hi

�y
Vi.

(11)

s =
1

h

[
𝜕h

𝜕x
(f̄ x − f x|z=h2) +

𝜕h

𝜕y
(f̄ y − f y|z=h2) + f z|z=h2 − f z|z=h1

]
.

(12a)
Q∗

i,j
= Qn

i,j
−

Δt

Δx
(Fn

x;i+1,j
− Fn

x;i,j
)

−
Δt

Δy
(Fn

y;i,j+1
− Fn

y;i,j
) − ΔtSn

i,j
,

Fig. 1  Sketch of the lubrication gap with height profiles of the lower 
and upper surface given in the local coordinate systems (xi, yi, zi) , 
moving with constant velocities �� = (Ui,Vi, 0)

⊤ and i ∈ [1, 2]. Panel 
a represents the macro problem and the micro problem is shown as a 
blue box in (a) or magnified in panel (b). The solution of the micro 
problem does not depend on the surface height gradients anymore. 
Deviation from no-slip boundary conditions is considered through the 
Navier slip length on the upper and lower surface respectively (c)
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 where Q∗
i,j

 and Q∗∗
i,j

 are intermediate solutions obtained from 
forward and backward differencing of the discretized flux 
vectors F∗∕n

x∕y;i,j
 and S∗∕n

i,j
 is the discrete source term. Here, 

subscripts i and j denote the grid cell with side lengths Δx 
and Δy and the superscript n denotes discrete time points 
separated by the time step Δt . The order of differencing 
directions is arbitrary and one could also switch between 
backward and forward differences after every consecutive 
time step. Although the intermediate steps are first order 
accurate, the overall scheme is second order accurate in 
space and in time.

Other Jacobian-free integration schemes such as Richt-
myer’s two-step version of the Lax–Wendroff scheme could 
also be implemented straightforwardly (see Ref. [11] for an 
overview of modifications to the Lax–Wendroff scheme with 
source terms). In the linear case (and without source term), 
MacCormack’s method is equivalent to the Lax–Wendroff 
scheme [12]. The presented scheme can be modified to be 
total variation diminishing (TVD) as shown by Davis [13]. 
This can be of particular use in the presence of large gra-
dients or at discontinuities, since spurious oscillations are 
damped by adding just the right amount of artificial viscos-
ity. The TVD-correction term to the MacCormack corrector 
step is shown in appendix B.

Boundary conditions are implemented using a ghost cell 
approach, leading to N + 2 cells in each direction, due to 
the three-point stencil of the MacCormack scheme. For 
Dirichlet-type boundary conditions, the value of the ghost 
cell is chosen such that the prescribed value of the conserved 
variable is satisfied at the cell boundary by linear interpola-
tion between the boundary cell and the ghost cell. Inflow and 
outflow boundary conditions ∇q = 0 are satisfied by setting 
the ghost cell value to the boundary cell value. Implementa-
tion of periodic boundary conditions is also straightforward. 
One-dimensional examples in Sect. 4 are computed using 
the full two-dimensional description with periodic bound-
ary conditions in y-direction, leading to a (N + 2) × 3-grid.

The scheme is implemented in Python using the numpy 
library [14]. Compared to conventional stationary Reyn-
olds solvers, computation time can be large, since we 
are resolving the full transient behavior of the flow until 
steady state is reached, while the time step is limited by 
the Courant–Friedrichs–Lewy condition. Computational 
speed-up is achieved by spatial domain decomposition 
in combination with a parallel implementation using the 

(12b)
Q∗∗

i,j
= Q∗

i,j
−

Δt

Δx
(F∗

x;i,j
− F∗

x;i−1,j
)

−
Δt

Δy
(F∗

y;i,j
− F∗

y;i,j−1
) − ΔtS∗

i,j
,

(12c)Qn+1
i,j

=
1

2

(
Q∗∗

i,j
+ Qn

i,j

)
,

mpi4py bindings to the message passing interface (MPI) 
[15].

To benchmark the scaling behavior of our code, we cal-
culated an incompressible flow problem until steady state 
for 400 × 400 and 1000 × 1000 finite-volume grid cells, 
respectively, on bwForCluster NEMO at the University of 
Freiburg (2x Broadwell E5-2360v4 at 2.2 GHz per com-
pute node with a 100 Gbit/s OmniPath interconnect). On 
the smaller grid, the serial implementation reaches only 
1.6 million lattice updates per second (MLUPS), which 
can be improved up to 54.4 MLUPS on 220 MPI processes 
(11 NEMO compute nodes). On the larger grid, our imple-
mentation peaks at 223.7 MLUPS when using 520 MPI 
processes (26 NEMO compute nodes). The number of time 
steps until steady state strongly depends on the nature of 
the problem, ranging from a few hundred steps to more 
than one million.

2.3  Micro Problem

The governing equation of the micro problem can be found 
by applying the splitting approach on Eq. (1)

By inserting Eq. (8), the governing equation of the macro 
problem, we obtain

where �� is the source term of the macro problem evaluated 
at the lateral position and time of the macro problem and 
the Jacobian reads

From the first row of Eq. (14), we find that �z�q4 = const. , 
but since there can be no mass flux through the walls it 
vanishes everywhere, i.e., q4 = jz = 0 . Thus, our split-
ting approach induces laminar flow, which is a reasonable 
assumption in thin-film flows and a reduced system is given 
by

(13)𝜕�̄

𝜕t
= −

𝜕�̄x

𝜕x
−

𝜕�̄y

𝜕y
−

𝜕�z

𝜕𝛿�
⋅

𝜕𝛿�

𝜕z
.

(14)
��z

���
⋅

���

�z
= �� = const.,

(15)
��z

���
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1

−
jxjz

�2
+

��xz

��

jz

�
+

��xz

�jx

��xz

�jy

jx

�
+

��xz

�jz

−
jyjz

�2
+

��yz

��

��yz

�jx

jz

�
+

��yz

�jy

jy

�
+

��yz

�jz

−
j2
z

�2
+

�(�zz+p)

��

��zz

�jx

��zz

�jy

2jz

�
+

��zz

�jz

⎞
⎟⎟⎟⎟⎟⎠

.
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or simply

The latter equation governs the local profiles of the remain-
ing conserved variables and illustrates the relation between 
micro and macro problem. On one hand, local stresses are 
determined by the macroscopic flow conditions represented 
through the source term, whereas, on the other hand, these 
stresses govern the time evolution of the macroscopic vari-
ables. In a multiscale simulation, the micro problem could 
be replaced by a more accurate simulation method, such as 
molecular dynamics. However, we want to proceed using 
common assumptions about the viscous stress tensor that 
lead to the well-known results of continuum lubrication 
modeling.

3  Constitutive Relations

So far, we have only formally derived the structure of the 
micro problem in Sect. 2.3 without explicit use of constitu-
tive laws. In the following section, we introduce common 
constitutive relations, both for the viscous stresses as well 
as the compressibility of the fluid. Thus, we are able to close 
the macro problem, and, with the numerical setup presented 
in Sect. 2.2, we address several aspects of lubrication mod-
eling, including wall slip, non-Newtonian fluids, and cavita-
tion. All material models shown here are implemented into 
the “Height-averaged Navier–Stokes” (HANS) solver which 
is publicly available under the terms of the MIT license1.

3.1  Newtonian Fluids

For Newtonian fluids, the viscous stress tensor is a linear 
function of the velocity gradient ∇u⃗ given by

where � and � are the coefficients of shear and bulk viscos-
ity, respectively. In order to express the components of the 
viscous stress tensor �  in terms of q̄ , we simply use our 

(16)

⎛
⎜⎜⎜⎜⎝

��xz

��

��xz

�jx

��xz

�jy
��yz

��

��yz

�jx

��yz

�jy
�(�zz+p)

��

��zz

�jx

��zz

�jy

⎞
⎟⎟⎟⎟⎠
⋅

⎛
⎜⎜⎜⎝

���

�z
��jx

�z
��jy

�z

⎞
⎟⎟⎟⎠
= const.,

(17)
�

�z

⎛⎜⎜⎝

�xz
�yz

p + �zz

⎞⎟⎟⎠
= const.

(18)𝜏 = 𝜂
(
∇u⃗ + (∇u⃗)⊤

)
+ (𝜁 −

2

3
𝜂)(∇ ⋅ u⃗)1,

knowledge about �  in Eq. (17). From the first two rows, we 
find that

where u(z) and v(z) are the streamwise components of the 
local velocity field u⃗(x0, y0, z) = (u, v,w)T  , which can be 
described using second-degree polynomials, 

 The cross-film velocity w(z) vanishes as already shown in 
Sect. 2.3.

The parameters �i and �i, i = 1, 2 are determined from 
the boundary conditions at the bottom and top wall, namely 

 where uslip,i and vslip,i are slip velocities.
From the third row of Eq. (17) we obtain �zp = const. . If 

we neglect body forces in z-direction, the pressure at the top 
and bottom wall must be the same and therefore we find the 
typical result p(z) = const. , which is equivalent to a constant 
mass density across the channel height.

Thus, with the definition of the height-averaged mass flux

we obtain the remaining parameters �i , which describe 
the Poiseuille contribution to the flow. This enables us to 
describe the viscous stress tensor according to Eq. (18) as a 
function of the average mass flux and density.

Hence, all entries of the flux matrix are given as a func-
tion of averaged conserved variables � = � (q̄) . Computing 
the source term also requires unaveraged flux values at the 
top and bottom wall which are automatically defined by the 
choice of velocity and density profiles.

(19)

��xz

�z
∝

�2u

�z2
= const.,

��yz

�z
∝

�2v

�z2
= const.,

(20a)u(z) = �1z
2 + �1z + �1,

(20b)v(z) = �2z
2 + �2z + �2.

(21a)u(h1) = U1 + uslip,1,

(21b)u(h2) = U2 + uslip,2,

(21c)v(h1) = V1 + vslip,1,

(21d)v(h2) = V2 + vslip,2,

(22)
̄⃗
j =

𝜌

h ∫
h2

h1

u⃗dz,

1 https:// github. com/ hannes- holey/ hans

https://github.com/hannes-holey/hans
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3.2  Wall Slip

Wall slip is typically quantified through the Navier slip 
length b [16]. It becomes relevant for confined lubricants, 
when the gap height is in the order of the slip length, such 
as in EHL contacts or in the boundary lubrication regime. 
The concept of slip length arises from the assumption that 
the interfacial shear stress is proportional to the slip velocity 
with the constant of proportionality quantifying the friction 
between fluid and solid. Using the Newtonian fluid constitu-
tive equation, the slip length can therefore be described as 
a combination of a purely bulk property (shear viscosity) 
with a purely interfacial one (friction) [17]. Geometrically, 
the slip length can be interpreted as the subsurface distance 
where the fluid velocity would equal that of the wall when 
linearly extrapolated, as shown in Fig. 1c. This leads to the 
following expression for the slip velocities 

where positive signs correspond to the upper and negative 
signs to the lower surface respectively. Naturally, many 
surfaces have heterogeneous surface chemistry, or surface 
properties can be tailored into particular stick–slip patterns, 
and therefore the slip length bi is a function of the lateral 
coordinates x, y.

3.3  Non‑Newtonian Fluids

Complex lubricants often deviate from the Newtonian fluid 
behavior, especially when subjected to high pressures and/or 
high shear rates. Non-Newtonian effects can be modeled by 
a generalized Newtonian fluid description, where an effec-
tive viscosity 𝜂eff = 𝜂(�̇� , p) replaces the constant one in the 
formulation of the Newtonian stress tensor, Eq. (18). For 
instance, shear-thinning or piezoviscous behavior is then 
described as a non-linear function of the shear rate �̇� and 
pressure p, respectively. Effects depending on the deforma-
tion history are not captured by the generalized Newtonian 
fluid model.

Accounting for piezoviscous effects is straightforward, 
since we have seen that pressure is constant across the gap 
height as a general result of our splitting approach. A typi-
cal model for the pressure dependence of viscosity is Barus 
equation [18]

(23a)uslip,i = ±bi

(
�u

�z

)

z=hi

,

(23b)vslip,i = ±bi

(
�v

�z

)

z=hi

,

(24)�(p) = �0 exp(�p),

where � is the pressure viscosity coefficient, typically rang-
ing between 10 and 20GPa−1 . Although Eq. (24) is known 
to overestimate the viscosity for higher pressures and more 
accurate empirical modifications exist [19, 20], it is still 
often used.

Conversely, the strain varies across the gap height for 
general Couette–Poiseuille flow, which leads to velocity pro-
files that deviate from the Newtonian quadratic ones. Hence, 
an effective viscosity law depending on a height-averaged 
strain rate would not give the correct stress, especially at 
locations where pressure-driven flow dominates.

Here, we employ a power-law fluid model to show that 
arbitrary constitutive laws can be incorporated into the micro 
problem. As the name suggests, the shear stress components 
depend on the shear rate through a power law

where n is the flow index, describing shear-thinning ( n < 0 ) 
or shear-thickening ( n > 0 ) behavior. � is called the flow 
consistency index and has units of Pasn . For n = 1 , we 
recover the Newtonian fluid.

Note that the power law does not correctly describe the 
fluid behavior in the limiting cases of zero or infinite shear 
rate. Typically, the effective viscosity converges to finite val-
ues ( �0, �∞ ) in these limits, which is for instance accounted 
for in the Carreau [21] or Eyring [22, 23] shear-thinning 
models. The type of shear-thinning model may also depend 
on pressure and/or temperature. In a recent molecular 
dynamics study on model fluids under EHL conditions, Jad-
hao and Robbins [24] showed that there is a generic transi-
tion from power-law behavior at low pressure, and therefore 
low viscosity, to Eyring behavior at high pressure.

Nevertheless, we use the simple power-law model here, 
since it can be treated analytically, but emphasize that prin-
cipally more realistic solutions to the micro problem could 
be found. Similar to the Newtonian case in Sect. 3.1, we 
integrate Eq. (17) of the micro problem to obtain the veloc-
ity profiles. Davaa et al. [25] showed that for plane Cou-
ette–Poiseuille flow of power-law fluids, two cases have to 
be distinguished: 

1. The velocity profile has a maximum within the gap that 
is larger than the sliding velocity, i.e., max u(z) > U for 
z ∈ [0, h],

2. The velocity profile either has a maximum within the gap 
that is lower than the sliding velocity, i.e., max u(z) < U , 
or it does not have a maximum within the gap at all.

Case 1 requires a piecewise integration from the lower wall 
z = 0 to the position of the maximum velocity z = h∗

1
 and 

from the location of the maximum velocity z = h∗
1
 to the 

upper wall z = h , whereas the velocity profile of case 2 can 

(25)𝜏 = 𝜙�̇�n.
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be written as a single expression that likewise depends on 
the location of the velocity maximum h∗

2
 , which not neces-

sarily lies within the gap. The velocity profiles have the form

A more detailed description of the integration procedure 
for the velocity profiles can be found in Appendix C or in 
Ref. [25]. The parameters �1 , �1 , and �2 are obtained in a 
similar fashion as in the Newtonian case using boundary 
conditions of the form of Eq. (21a)–(21d). Finally, �1 and 
�2 are obtained from the definition of the height-averaged 
momentum flux, Eq.  (22). However, in both cases, the 
unknown parameters h∗

1
 and h∗

2
 are left to be determined. In 

case 1 we use the continuity condition of the velocity pro-
file at z = h∗

1
 as an additional expression for �1 and in case 2 

we use the remaining boundary condition at the top wall to 
obtain �2 . By equating these two expressions for �i in both 
cases, respectively, we obtain two non-linear equations that 
determine h∗

1
 and h∗

2

where ū denotes the height-averaged velocity. Setting h∗ = 0 
in either of the equations leads to the critical condition 
U∕ū = (1 + 2n)∕(1 + n) that marks the boundary between 
the two cases. The resulting velocity profiles, such as the 
ones shown in Fig. 2, are then used to compute the viscous 
stress tensor components for the power-law fluid.

3.4  Equation of State and Cavitation

Next to the viscous stress tensor another constitutive relation 
is naturally contained in the flux function. For compressible 
fluids, the system of continuity equation and momentum 
balance needs to be closed by an equation of state, relating 
the pressure in the hyperbolic flux contribution to the mass 
density. Various types of equations describing the compress-
ibility of the fluid can be used, ranging from the ideal gas to 
semi-empirical descriptions, such as the isothermal Dow-
son–Higginson [26, 27] equation of state

(26)
u(1)(z) =

⎧
⎪⎨⎪⎩

−
n

n+1
𝛼

1

n

1

�
h∗
1
− z

� n+1

n + 𝛽1, 0 ≤ z ≤ h∗
1

−
n

n+1
𝛼

1

n

1

�
z − h∗

1

� n+1

n + 𝛾1, h∗
1
< z ≤ h

u(2)(z) = −
n

n + 1
𝛼

1

n

2

�
h∗
2
− z

� n+1

n + 𝛽2.

(27)

⎡⎢⎢⎣
(1 + n)U

(h − h∗
1
)
n+1

n − h
∗
n+1

n

1

⎤
⎥⎥⎦

n

=

⎡
⎢⎢⎣
(1 + 2n)(ūh − Uh∗

1
)

h
∗
2n+1

n

1
+ (h − h∗

1
)
2n+1

n

⎤
⎥⎥⎦

n

,

U =

ūh

�
h
∗
n+1

n

2
− (h∗

2
− h)

n+1

n

�

n

2n+1

�
h
∗
2n+1

n

2
− (h∗

2
− h)

2n+1

n

�
− h(h∗

2
− h)

n+1

n

,

with fitting parameters C1 and C2 , which is commonly used 
for mineral base oils.

However, such expressions do not reflect the effect of 
vaporous cavitation, which mainly occurs in diverging 
contact geometries, where the pressure may fall below 
the vapor pressure of the liquid. The first model that 
accounted for mass-conserving cavitation was based on the 
work of Jakobsson, Floberg, and Olsson (JFO) [28–31], 
who formulated boundary conditions for the rupture and 
reformation of a fluid film under the assumption that the 
pressure is constant in the cavitated regions. Elrod’s and 
Adam’s cavitation algorithm [32, 33] builds upon the JFO 
approach, but added a switch function to the Reynolds 
equation that suppresses the Poiseuille contribution to 
the flow in the cavitated regions. The advantage of the 
Elrod–Adams (EA) approach is that a single equation can 
be used for the whole domain.

Here, we incorporate mass-conserving cavitation 
directly through the equation of state, by either fixing the 
pressure to a constant value pcav at densities lower than the 
saturation density, which is conceptually similar to the EA 
algorithm or using a unique equation of state describing 
the behavior of vapor, liquid, and vapor–liquid mixture as 
in the model of Bayada and Chupin [34].

Their model assumes constant compressibility both in 
the liquid and the vapor phases, defined by the velocities 
of sound cl and cv , respectively. The assumption that both 
phases of the vapor–liquid mixture have the same velocity 
allows to homogenize the dynamics of the flow in the cavi-
tated region such that the same set of equations as in the 
full-film region can be used. The pressure–density relation 

(28)p(�) = p0 + C1

� − �0

C2�0 − �
,

Fig. 2  Example of velocity profiles for a power-law fluid under 
Couette–Poiseuille flow for three different flow indices (shear-
thinning: n = 0.5 , Newtonian: n = 1 , shear-thickening: n = 1.5 ). 
Solid lines represent case 1 ( ̄u∕U > (1 + n)∕(1 + 2n) ) with sig-
nificant Poiseuille contribution and dashed lines represent case 2 
( ̄u∕U < (1 + n)∕(1 + 2n) ), where the flow is Couette dominated.
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for the mixture of vapor bubbles and liquid is defined in 
terms of the vapor fraction � = (� − �l)∕(�v − �l) , in which 
�v and �l are the density of the vapor and the liquid at the 
wet point and the bubble point, respectively. Bayada and 
Chupin used a relation proposed by Van Wijngaarden [35]

relating the fluid’s velocity of sound cf with the vapor frac-
tion. Integrating equation dp∕d� = c2

f
 in each of the regions 

and requiring continuity of the pressure at the transition 
from vapor to mixture ( � = 1 ) as well as from mixture to 
liquid ( � = 0 ) and that p(0) = 0 , one finds

with pressure at the transition points from vapor to mixture

and from mixture to liquid (i.e., the cavitation pressure)

Note that, for convenience, in Eq. (30) the definition of � 
is extended to values larger than one or smaller than zero. 
Obviously, the interpretation as the vapor fraction is then 
no longer valid in these regimes. Fig. 3 shows an example 
of Eq. (30) for material parameters that lead to a cavitation 

(29)
1

c2
f

= �

(
�

c2
v
�v

+
1 − �

c2
l
�l

)
,

(30)p(𝜌) =

⎧⎪⎨⎪⎩

c2
v
𝜌, 𝛼 ≥ 1,

pcav + (𝜌 − 𝜌l)c
2
l
, 𝛼 ≤ 0,

pvm + N ln
�

𝜌vc
2
v
𝜌

𝜌l(𝜌vc
2
v
(1−𝛼)+𝜌lc

2
l
𝛼)

�
, 0 < 𝛼 < 1,

(31)pvm = �vc
2
v
,

(32)

pcav = �vc
2
v
− N ln

(
�2
v
c2
v

�2
l
c2
l

)
, with

N =
�vc

2
v
�lc

2
l
(�v − �l)

�2
v
c2
v
− �2

l
c2
l

.

pressure of 0.061MPa . For comparison, an EOS following 
the Dowson–Higginson relation in the liquid phase and hav-
ing constant pressure everywhere else is given, which rep-
resents a realization of the EA algorithm through the EOS.

The pressure–density relation of Bayada and Chupin 
[34] is accompanied by a viscosity model that interpolates 
between the vapor and liquid viscosity, the simplest one 
being a linear interpolation in terms of the vapor fraction �

4  Numerical Tests

In this section we demonstrate the validity and versatility of 
the HANS solver. We use the local solutions to the micro 
problem with the constitutive relations presented in Sect. 3 
to solve the macro problem with the numerical framework 
presented in Sect. 2.2. When available, we compare the con-
verged steady-state pressure and density profiles to literature 
results.

4.1  Inclined Slider

As a first test for the transient numerical scheme, we use an 
inclined slider geometry with an ideal gas EOS and compare 
the steady-state solution with the results of Ref. [8] obtained 
from a compressible Reynolds equation. The height profile 
is given by h(x) = hmax − sx for x ∈ [0, L] , where s is the 
slope of the pad. Here, we test the scheme at different sliding 
speeds U for a bearing with L = 0.1m , hmax = 66�m , and 
s = 5.6 ⋅ 10−4 . The equation of state is given as

with ambient pressure p0 = 101325 Pa and ambient density 
�0 = 1.1853 kg/m3 . The shear viscosity is assumed to be con-
stant at value of � = 18.46 ⋅ 10−6 Pas and the bulk viscosity � 
is set to zero. The obtained pressure profiles for three differ-
ent velocities of the gas-lubricated slider bearing are shown 
in Fig. 4a. A substantial increase of load-bearing capacity 
with sliding speed can be observed and the results match 
perfectly with the ones obtained in Ref. [8].

The simulation results for the inclined slider geometry, 
as well as all other tests in the remainder of this section, are 
obtained under the assumption that convective (non-linear) 
inertial terms in the momentum equations can be neglected, 
which is a reasonable assumption in most cases. However, 
as shown in Ref. [8] for slider bearings and the ideal gas 
EOS, these necessary additional assumptions can lead to 
significant errors at high sliding speeds. Since the convective 
acceleration term is generally included into the definition of 

(33)�(�) = �v� + (1 − �)�l, 0 ≤ � ≤ 1.

(34)p(�) =
p0

�0
�,

Fig. 3  Equation of state (EOS) used for modeling mass-conserving 
cavitation in combination with the height-averaged Navier–Stokes 
solver. Bayada and Chupin [34] use a smooth function to interpolate 
between the pure vapor and liquid phases, whereas the Elrod–Adams 
algorithm with Dowson–Higginson EOS (cf. Ref  [36]) leads to a 
sharp edge at the cavitation pressure.
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the flux function in Eq. (2), we have tested its influence for 
the inclined slider geometry for three different velocities. In 
Fig. 4b, the relative difference between the height-averaged 
Stokes solution (without non-linear term, ps ) and the height-
averaged Navier–Stokes solution ( pNS ) is shown. The maxi-
mum pressure error due to neglection of inertial terms for a 
sliding speed of U = 125m/s goes up to 8% and agrees with 
the error reported in Ref.[8]. We want to highlight that both 

linear and non-linear solutions are obtained using the same 
numerical framework.

We further test the scheme for fluids with varying com-
pressibility using the Dowson–Higginson EOS (Eq. (28)). 
Here, we choose the parameters reported in Ref.  [36] 
( C1 = 2.22GPa , C2 = 1.66 ) and a slider geometry with 
inlet gap height hmax = 1.5�m , sliding speed U = 0.1m/s , 
and three different slopes. The obtained pressure profiles are 
shown in Fig. 5 and are compared with results obtained from 
the compressible Reynolds solver reported in Codrignani 
et al. [37]. As in the previous case, the obtained pressure 
profiles match the Reynolds reference solution.

4.2  Journal Bearing with Power‑Law Fluid

We have introduced the power-law fluid in Sect. 3.3 as an 
example for a generalized Newtonian fluid. The availabil-
ity of analytical expressions for the velocity profiles allows 
us to implement the relevant stress components as a result 
of the micro problem for power-law fluids. This highlights 
the advantage of our splitting approach, since the numerical 
solution of the macro problem remains untouched.

We test our implementation of power-law stresses for 
an infinitely long journal bearing geometry which can be 
described by a sinusoidal height profile

with radial clearance c = Rb − Rj and eccentricity e. Rb and 
Rj are the radii of the bearing and journal, respectively. The 
eccentricity ratio is defined as � = e∕c.

The resulting pressure profiles for four different flow indi-
ces are shown in Fig. 6. All simulations were performed 
for a journal bearing with eccentricity ratio � = 0.6 , bear-
ing radius Rb = 1∕2�mm , clearance c = 0.01Rb , and at 
a sliding speed of U = 5m/s . The flow consistency index 

(35)h(�) = c + e cos(�∕Rb),

Fig. 4  Pressure profiles for a gas-lubricated inclined slider geom-
etry for three different sliding speeds and comparison to results from 
Ref. [8] (a). The influence of including convective acceleration terms 
is studied in (b) for increasing sliding speed. In both cases, the fluid 
is described by an isothermal ideal gas equation of state and has con-
stant viscosity. Pressure profiles for the highest velocity U = 125m/s 
are obtained using the total variation diminishing (TVD) version of 
the MacCormack scheme

Fig. 5  Pressure profiles for an inclined slider geometry with three 
different slopes at sliding speed U = 0.1m/s and Dowson–Higgin-
son equation of state. Reference solutions are obtained from a finite-
difference solver for the compressible Reynolds equation used in 
Ref. [37]

Fig. 6  Non-dimensional pressure profiles for four power-law fluids 
in an infinitely long journal bearing. The flow index determines the 
strength of the shear-thinning ( n < 1 ) or shear-thickening ( n > 1 ) 
effect. For n = 1 we recover the Newtonian case
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� = 0.0794 Pasn is the same in all four cases and can be 
interpreted as the Newtonian shear viscosity for n = 1 . 
For a better comparison we show the dimensionless pres-
sure profiles p̃ = (p − p0)(c∕U)nc∕(2𝜋Rb𝜙) . The effect of 
non-Newtonian lubricants with shear-thinning ( n < 1 ) or 
shear-thickening ( n > 1 ) effect is directly visible from the 
normalized pressure profiles. However, this example cannot 
be used to describe an increase or decrease of load-bearing 
capacity due to the non-Newtonian behavior of the lubricant, 
since cavitation is not considered in the diverging part of 
the geometry. The implementation of cavitation models is 
validated in the following examples.

4.3  (Twin‑) Prabolic Slider

To study the effect of cavitation in hydrodynamic lubrica-
tion, we use a converging–diverging height profile, where 
we expect cavitation bubble formation in the diverging part 
of the bearing. Therefore, we use a parabolic slider geom-
etry, which has been widely used to benchmark cavitation 
models. The height profile of the one-dimensional bearing 
is given by

with maximum gap height hmax = 50.8�m , minimum gap 
height hmin = 25.4�m , and length Lx = 76.2mm . The 
parameters describing the lubricant through Eq. (30) are 
given in Tab. 1. The resulting pressure profiles for two dif-
ferent discretizations ( N = 100 and N = 200 ) are shown in 
Fig. 7a and the relative density or saturation �∕�l is shown 
in Fig. 7b. Both agree very well with the profiles presented 
in Ref. [38].

The cavitation pressure pcav , or, in the notation of Bayada 
and Chupin, pml , for the presented results is approximately 
0.061MPa . As shown in their paper, the obtained results can 
be directly compared to solutions using the JFO/EA formal-
ism, when using the same cavitation pressure and a constant 
compressibility EOS in the full-film region.

Here, we proceed with another numerical test using an 
EOS with varying compressibility in combination with 
the EA algorithm, as for instance presented in Ref. [36]. 
The so-called twin-parabolic slider is used, consisting of 

(36)h(x) =
4(hmax − hmin)

L2
x

(
x −

Lx

2

)2

+ hmin,

two neighboring “bumps” with a parabolic shape and the 
same minimum and maximum gap heights as in the previ-
ous example. The length and sliding speed of the bearing 
are also the same as before. The pressure boundary condi-
tions at the inlet and outlet are pin = 3.36 p0 and pout = pcav , 
respectively, with ambient pressure p0 = 105 Pa and cavita-
tion pressure pcav = 0 Pa . The pressure profile is shown in 
Fig. 8 which agrees well with the result of Ref. [36].

4.4  Flat Channel with Roughness

Surface roughness plays an important role in lubrication, 
since small-scale height variations can lead to non-zero 
load-bearing capacities even when the contacting surfaces 
are macroscopically flat, which was first observed experi-
mentally by Hamilton et al. [39]. Hence, we benchmark 
the presented numerical scheme on geometries that mimic 
surface roughness. Again, we use an example presented in 
Ref. [36], with a height profile given by

We study two realizations of this profile, with amplitude 
parameter a = h0∕2 and two different frequencies. The num-
ber of periods n affects the gap height at the inlet, where 
n = 5 leads to a diverging inlet and n = 4.75 to a converging 
inlet, as shown in Fig. 9a. We perform simulations for gap 
height h0 = 10�m , bearing length L = 0.1m , sliding speed 

(37)h(x) =

{
h0 + a sin2

(
4𝜋n

L

(
L

2
− x

))
, 0 ≤ x < L∕2,

h0, L∕2 ≤ x ≤ L.

Table 1  Parameters for the equation of state and the viscosity of liq-
uid and vapor phase following Ref. [34]

�l �v cl cv �l �v

(Pas) (Pas) (m/s) (m/s) (kg/m3) (kg/m3)

0.039 3.9 ⋅ 10−5 1600 352 850 0.019

Fig. 7  Pressure profile (a) and saturation profile (b) for the parabolic 
slider geometry and comparison to the results of Ref. [38]
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U = 0.25m/s , and the fluid’s viscosity is � = 0.04 Pas . The 
resulting pressure profiles do not only depend on the gap 
height and geometry of the inlet, but also on the pressure 
boundary condition.

In this example, we use both a pressurized inlet 
( pin = 2 pcav ) and a starved inlet ( pin = pcav ) with 
pcav = 105 Pa . The former case leads to a pressure profile with 
load-bearing capacity for both type of geometries as can be 
seen in Fig 9b. Also, if the inlet geometry is converging and 
the ambient pressure is the cavitation pressure, a load-bearing 
capacity can be achieved, since incoming fluid is immediately 
compressed and further surface corrugations do not lead to 
cavitation. The obtained pressure profiles are similar for all 
three cases and agree very well with the results of Ref. [36].

The last case, a starved inlet with diverging geometry, is 
different from the previous ones as it does not generate a load-
bearing pressure profile. However, the results of the transient 
simulation reveal that initially a substantial pressure build-up 
is produced, which is similar to the other three situations. With 
increasing time, a small cavitation zone grows from the inlet 
into the domain and the pressure peak decreases. Further-
more, as shown in the time evolution of the pressure profile in 
Fig. 9c, the velocity with which the cavitation zone expands 
decreases until it almost comes to a standstill at t = 8 s , with 
a remaining non-zero load-bearing capacity. This example 
highlights an advantage of the explicit solution algorithm in 
comparison to the mostly implicit solutions of the stationary 
Reynolds equation, since transient phenomena in lubrication 
are automatically resolved.

4.5  Flat Channel with Heterogeneous Wall Slip

Surface slip reduces friction and the possibility to control the 
surface chemistry [40] opens a wide range of applications 
in lubrication, e.g., by tailoring the confining walls of a flat 
channel into slipping and sticking domains [41, 42]. Here, we 
study a flat channel of length L = 2� and height h with het-
erogeneous wetting properties at the top surface as reported in 
Ref. [43]. The lower surface sticks and is sheared at constant 
velocity U1 . For better comparison, we here present the results 
for the pressure in dimensionless form, i.e., p̃ = p∕p0 , with 
p0 = �U1�∕h

2 . The sticking and slipping domains have equal 
length � , and periodic boundary conditions are applied in the 
x- and y-direction (infinitely long bearing).

The obtained pressure profiles for three different sliding 
velocities are compared to a Reynolds model including wall 
slip for an incompressible fluid in Fig. 10a. Since our method 
is generally designed for compressible fluids, we arbitrarily 
choose an extremely stiff EOS to mimic incompressibility. 
Here, we use again the Dowson–Higginson EOS and choose 
parameters ensuring that deviations from the reference density 
are negligibly small. The Reynolds model predicts a pressure 
gradient

Fig. 8  Pressure profile for the twin-parabolic slider geometry and 
comparison to the results of Ref. [36]

Fig. 9  Geometry of the flat channel with sin2-roughness (a), corre-
sponding pressure profiles for starved converging inlet (dashed blue 
line), pressurized diverging inlet (solid orange line), and pressurized 
converging inlet (dashed green line) (b). Black lines in (b) correspond 
to the results from Ref.  [36] and appear as dashed, dash-dotted, and 
dotted lines, respectively (in the same order). The time evolution of 
the pressure profile for a starved diverging inlet is shown in (c)
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with �1 and �2 being the size of the sticking and slipping 
domain, respectively. Thus, for �1 = �2 = L∕2 , the non-
dimensional pressure gradient reads

with x̃ = x∕𝜆 and � = 5b∕(2h + 5b) . The dimensionless 
pressure profiles normalized by the wall slip quantifying 
parameter � agree perfectly with the prediction of Eq. (37). 
However, both the analytical model and the numerical 
results predict unphysical negative pressures, and a non-zero 
load-bearing capacity in symmetric systems with periodic 
boundary conditions can only be achieved by considering 
cavitation.

Therefore, we proceed with parameters that represent 
the n-decane system studied with molecular dynamics 
(MD) simulations in Ref.  [43]. The channel has length 

(38)
�p

�x
=

⎧⎪⎨⎪⎩

−
6�U1

h2

�
b�2

�1(h+4b)+�2(h+b)

�
, 0 ≤ x ≤ �1

6�U1

h2

�
b�1

�1(h+4b)+�2(h+b)

�
, L − �2 ≤ x ≤ L,

(39)
𝜕p̃

𝜕x̃
=

{
−6𝜅∕5, 0 ≤ x̃ ≤ 1,

6𝜅∕5, 1 ≤ x̃ ≤ 2,

L = 143.9 nm , height h = 5.5 nm , and sliding velocity 
U1 = 10m/s . We use the van der Waals equation as EOS

w i t h  a = 5.273 Pam6∕mol2  ,  b = 3.04 ⋅ 10−4 m3∕mol  , 
M = 142.29 g/mol , T = 303K , and the shear viscosity is 
� = 0.3mPas . To avoid negative pressure and the unphysi-
cal increase of pressure with volume in the subcritical van 
der Waals loop, we use the aforementioned EA approach 
with a cutoff at Pcav = 1MPa , which agrees with the external 
pressure applied in the MD simulations. Note, that in case 
of the van der Waals equation, the EA approach is similar 
to the well-known Maxwell construction [44], except that 
our choice of saturation pressure is not based on the equal 
area rule.

The dimensionless pressure profiles for the n-decane sys-
tem are shown in Fig. 10b for two different slip lengths. For 
both systems a cavitation zone forms directly at the transi-
tion from stick to slip behavior at the top wall and the size 
of the cavitation zone decreases with increasing slip length. 
We extract the size of the full-film regions �1 and �2 from 
our simulation to compute the Reynolds solution according 
to Eq. (38). The analytical and numerical pressure profiles 
agree reasonably well. The slight curvature of the numerical 
pressure profiles can be accounted to the compressibility of 
the van der Waals equation in contrast to the incompressible 
analytical result.

The inset of Fig. 10b shows the non-dimensional load-
bearing capacity per unit width

for various slip lengths. The simulation results suggest that 
with increasing stick–slip contrast the system’s ability to 
support an external load increases linearly for small slip 
lengths b << h until it reaches a stable value as b is in the 
order of the gap height or larger, which agrees with the ana-
lytical Reynolds model.

The MD simulations of Savio et al. [43] predict a sub-
stantially larger cavitation zone and, consequently, lower 
pressure excursion in the remaining full-film region. The 
pressure falls below the external pressure in front of the 
stick–slip boundary, where it reaches its minimum before it 
goes to zero in the cavitated zone. Such complex behavior 
governed by the nucleation, lifetime, and collapse of vapor 
bubbles cannot be addressed with simple macroscopic cavi-
tation models.

This example foreshadows the potential application of 
the presented solver in multiscale frameworks, such as the 
combined use of MD simulations and continuum methods. 
Molecular interactions govern effects, such as the nucleation 

(40)p(�) =
RT�

M − b�
−

a�2

M2
,

(41)W̃ =
W

p0L
=

1

p0L ∫
L

0

p(x)dx

Fig. 10  Non-dimensional pressure distributions for a flat channel with 
heterogeneous wall slip and comparison to a Reynolds model, includ-
ing slip. A nearly incompressible equation of state (EOS) is used in 
(a), which allows the pressure to go below zero. The pressure pro-
files for the n-decane system from Ref. [43] obtained from Molecular 
Dynamics (MD) simulations, as well as continuum results for two dif-
ferent slip lengths are shown in (b), where the van der Waals equation 
with a cutoff at Pcav = 1MPa is employed to model cavitation. The 
inset in (b) shows the non-dimensional load-bearing capacity per unit 
width for various slip lengths
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of cavitation bubbles or local variations of surface slip, that 
are important to accurately describe lubrication phenomena 
on experimental length and time scales.

5  Conclusion

In this paper, a novel method to solve lubrication problems 
has been derived. Splitting the hydrodynamic variables into 
a time-dependent height-averaged and a local cross-film part 
implies laminar flow, which is a reasonable assumption in 
lubrication, but avoids further assumptions on constitutive 
behavior. We derived height-averaged balance equations for 
mass and momentum which contain an additional source 
term as a result of the reduction of dimensionality. Analyti-
cal solutions for the micro problem have been derived for the 
Newtonian fluid and the power-law fluid as an example for a 
generalized Newtonian (time-independent non-Newtonian) 
fluid.

The time-explicit finite-volume scheme to solve the 
macro problem has been tested for common constitutive laws 
and it has been shown that various results from established 
solution schemes can be reproduced. The numerical tests 
included lubrication problems for compressible fluids with 
and without consideration of inertial effects, mass-conserv-
ing cavitation, wall slip, as well as non-Newtonian fluids. 
The explicit solution algorithm allows to study dynamic 
problems, such as the time evolution of lubricant flow 
between geometrically and chemically structured surfaces.

The additional complexity of our method in comparison 
to standard Reynolds solvers is legitimated by its flexibility 
due to the clear separation of local constitutive behavior and 
macroscopic flow evolution. Hence, it should not be seen as 
a competitor against Reynolds-based schemes, but rather as 
a complementary method in situations where the constitutive 
behavior does not allow a straightforward application of a 
Reynolds-type equation.

Furthermore, we believe that solving the micro problem 
is not limited to the analytical examples shown here. Finding 
approximate or closed-form solutions to the micro problem 
allows testing of new constitutive models within the pre-
sented numerical framework. Concurrent multiscale simu-
lations may represent another useful application, where the 
micro problem could be outsourced and solved using more 
accurate simulation methods, such as molecular dynamics.

A. Detailed Derivation 
of the Height‑Averaged Balance Equations

Starting from Eq. (4) and applying Leibniz integral rule for 
differentiation under the integral sign on the l.h.s., we obtain

The first term on the r.h.s. of Eq. (A1) can be rewritten using 
the product rule

Using dh
dt

=
dh2

dt
−

dh1

dt
 and plugging the result back into 

Eq. (A1) leads to

Multiplying Eq. (A3) by h and using the shorthand notation 
for height averages �̄� =

1

h
∫ h2
h1

𝜙dz yields exactly Eq. 6. The 
derivation for the terms on the r.h.s. of Eq.  (4) follows 
equivalently.

B. TVD‑MacCormack Correction

To obtain a TVD-variant of the MacCormack scheme, we 
add a correction term

to the corrector step (Eq. (12a)) with

and

(A1)

1

h ∫
h2

h1

�tqdz =
1

h

(
�t ∫

h2

h1

qdz − q|z=h2
dh2

dt
+ q|z=h1

dh1

dt

)
.

(A2)
1

h
�t ∫

h2

h1

qdz = �t

(
1

h ∫
h2

h1

�dz

)
+

1

h2
dh

dt ∫
h2

h1

qdz.

(A3)

1

h ∫
h2

h1

�tqdz = �t

(
1

h ∫
h2

h1

qdz

)
+

1

h

(
1

h ∫
h2

h1

qdz − q|z=h2
)
dh2

dt

−
1

h

(
1

h ∫
h2

h1

qdz − q|z=h1
)
dh1

dt
.

(B4)
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i,j

= [K(r+
i
) + K(r−
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)]Δ�n

i+1∕2,j

− [K(r+
i−1

) + K(r−
i
)]Δ�n

i−1∕2,j

+ [K(r+
j
) + K(r−

j+1
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i,j+1∕2

− [K(r+
j−1

) + K(r−
j
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(B5)

r±
i
=

Δ�n
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⋅ Δ�n
i+1∕2,j

Δ�n
i±1∕2,j

⋅ Δ�n
i±1∕2,j

,

r±
j
=

Δ�n
i,j−1∕2

⋅ Δ�n
i,j+1∕2

Δ�n
i,j±1∕2

⋅ Δ�n
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,
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i,j
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−�n
i,j
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(B6)K(r) =
C

2
(1 − �(r)),
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where �(r) = max(0,min(2r, 1)) is the flux limiter function 
and the parameter C depends on the local Courant number 
� through

For more details see Ref. [13].

C. Integration of Velocity Profiles 
for Power‑Law Fluids

The constitutive relation for a power-law fluid Eq. (25) 
together with the governing equation of the micro problem 
Eq. (17) leads to a non-linear ordinary differential equa-
tion for the velocity profile. For the lower part of case 1 
we have

where �1 is a constant. We choose an ansatz for the strain 
rate of the form

which leads to

Hence, we find � = 1∕n and A = �
1∕n

1
 such that the velocity 

profile is given by

The integration constant �1 is determined using the boundary 
condition at the lower wall u(0) = U.

Furthermore, the velocity profile for the upper part of 
case 1 can be found in a similar manner using

and an ansatz

The resulting velocity profile reads

(B7)C =

{
𝜈(1 − 𝜈), 𝜈 ≤ 0.5

0.25, 𝜈 > 0.5.

(C8)d2u

dz2
= −

�1

n

(
du

dz

)1−n

, 0 ≤ z ≤ h∗
1
,

(C9)
du

dz
= A

(
h∗
1
− z

)�
,

(C10)A�(h∗
1
− z)�−1 =

�1

n
A1−n(h∗

1
− z)�(1−n).

(C11)u(z) = −
n

n + 1
�

1

n

1

(
h∗
1
− z

) n+1

n + �1, 0 ≤ z ≤ h∗
1
.

(C12)d2u

dz2
= −

�1

n

(
−
du

dz

)1−n

, 0 ≤ z ≤ h∗
1
,

(C13)
du

dz
= A

(
z − h∗

1

)�
.

(C14)u(z) = −
n

n + 1
�

1

n

1

(
z − h∗

1

) n+1

n + �1, h∗
1
≤ z ≤ h.

The derivation of the velocity profile for case 2 is identical 
to that of the lower part of case 1.
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