78 research outputs found

    Lähtisitkö kanssani luolastoon? Kuvailun merkitys AD&D-pöytäroolipelissä ja pelimoduuleissa

    Get PDF
    Artikkeli käsittelee funktionaalisen kuvailun käyttöä osana roolipelaamista. Lähestyn aihetta The Temple of Elemental Evil -pelimoduulin kautta. Pelimoduuleja käytetään osana roolipelaamista ja The Temple of Elemental Evil sisältää hyvin paljon kuvailua. Tutkimuksessa paljastuu kolme tärkeää havaintoa. Ensimmäinen tekijä on se, että mitä pidemmälle vapaa tarinankerronta ryhmätasolla etenee, sitä vaikeammaksi sen ennakoitavuus tulee. Toiseksi, funktionaalisen kuvailun tärkeimpänä funktiona roolipelaamisessa on tarjota tila tapahtumille. Kolmantena on kompromissi pelaajien yhdessä toteuttaman pääosin improvisoidun kerronnan ja tarinan ohjaajan kontrollin välillä

    Optimization of the precipitation of clavulanic acid from fermented broth using t-octylamine as intermediate

    Get PDF
    This work describes the use of clavulanic acid (CA) precipitation as the final step in the process of purification of CA from fermentation broth as an alternative to conventional methods employed traditionally. The purpose of this study was to use a stable intermediate (t-octylamine) between the conversion of CA to its salt form (potassium clavulanate), thereby enabling the resulting intermediate (amine salt of clavulanic acid) to improve the purification process and maintain the stability of the resulting potassium clavulanate. To this end, response surface methodology was employed to optimize the precipitation step. For the first reaction, five temperatures (6.6 to 23.4 ºC), concentrations of clavulanic acid in organic solvent (6.6 to 23.4 mg/mL) and t-octylamine inflow rates (0.33 to 1.17 drop/min) were selected based on a central composite rotatable design (CCRD). For the second reaction, five temperatures (11.6 to 28.4 ºC), concentrations of clavulanic acid amine salt in organic solvent (8.2 to 41.8 mg/mL) and concentrations of potassium 2-ethylhexanoate (0.2 to 1.2 molar) were also selected using CCRD. From these results, precipitation conditions were selected and applied to the purification of CA from the fermentation broth, obtaining a yield of 72.37%.23124

    Atomic Layer Deposition (ALD) to Mitigate Tin Whisker Growth and Corrosion Issues on Printed Circuit Board Assemblies

    Get PDF
    This paper presents the results of a research program set up to evaluate atomic layer deposition (ALD) conformal coatings as a method of mitigating the growth of tin whiskers from printed circuit board assemblies. The effect of ALD coating process variables on the ability of the coating to mitigate whisker growth were evaluated. Scanning electron microscopy and optical microscopy were used to evaluate both the size and distribution of tin whiskers and the coating/whisker interactions. Results show that the ALD process can achieve significant reductions in whisker growth and thus offers considerable potential as a reworkable whisker mitigation strategy. The effect of ALD layer thickness on whisker formation was also investigated. Studies indicate that thermal exposure during ALD processing may contribute significantly to the observed whisker mitigation

    LiDAR Based Obstacle detection for Snow Groomers

    Get PDF
    This paper presents an obstacle detection system for snow groomers. The system is based on a 2D solid-states LiDAR sensor mounted on the top of the cabin. The measurements describe the surrounding environment through an Occupancy Grid framework, which is extended for this particular case study. The proposed approach set the occupancy probability of the surrounding environment based on the expected height of the obstacle. The method is extensively analyzed through experimental test on a snow groomer

    The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compression

    Get PDF
    This work presents an investigation on the effects of adiabatic heating and strain rate on the dynamic compressive response of titanium, iron, copper, and tin. The high strain rate tests were carried out with a Split Hopkinson Pressure Bar (SHPB) and the low strain rate tests with a servohydraulic testing machine. The temperature increase of the specimens during deformation was measured with high speed infrared thermography (IRT). The results show that all the investigated materials have positive strain rate sensitivity and temperature increases of up to 65 °C were observed in the high strain rate experiments (500–3100 s−1). Adiabatic heating in all investigated materials increased with strain rate. The temperature increase at the strain rate of 1 s−1 clearly diminished the strain hardening rate of iron and titanium but was seemingly insufficient to impact the mechanical behavior of copper and tin. The Taylor–Quinney coefficients (βint and βdiff) were found to be strain and strain rate dependent. At higher strain rates (1200–3100 s−1), the integral βint was smaller in the beginning of the test (0.2 to 0.7) and increased to approximately 0.8–0.9 at larger plastic strains. The differential βdiff comprised gaussian curves as a function of strain whose maximum values were from 0.9 to 1.2 for the investigated materials. Tin had lower βint and βdiff with higher strain hardening rates, while copper had a higher βint and βdiff with a low strain hardening rate throughout the high strain rate tests. These results indicate that copper had a more stable microstructure during deformation and converted most of the applied plastic work into heat, while tin had a faster evolving microstructure which stored more plastic work in its microstructure during plastic deformation. Furthermore, this suggests that βint and βdiff can be used as parameters to investigate the stability and the microstructural evolution of materials under high strain rate plastic deformation. βdiff is more appropriate to describe the instantaneous thermomechanical behavior of a material and βint is more appropriate for applications which benefit from a single parameter to characterize how efficiently a material converts plastic work into heat up to a given strain level.publishedVersionPeer reviewe

    Numerical modeling of the dynamic strain aging in steels at high strain rates and high temperatures

    Get PDF
    Carbon steels can be heat treated to produce different microstructural variations and mechanical properties. At high temperatures the material plasticity and strength can be influenced by diffusional effects like the Portevin-Le Chatelier effect, leading to a commonly observed increased strength at elevated temperatures. The diffusional effects are influenced by the chemical composition, but also the heat treatment history that affects the local composition and especially the concentrations of free solute atoms. In this work, a numerical approach was implemented to reproduce the thermomechanical behaviour of two different microstructural variants of steel grade C45. The experimental data used to calibrate the model includes information of the plastic behaviour of material subjected to dynamic compression loading at a wide range of temperatures. Special emphasis was focused to describe the effects of the dynamic strain aging (DSA) on the flow stress. A strategy based on machine learning was implemented to obtain a model that reproduces the strengthening of the material due to diffusional effects. Cubic Support Vector Machine models were trained for both microstructure variants of the steel and different surfaces were obtained to describe the topology of the flow stress as function of temperature and strain rate. The model predictions were compared to the behaviour described by the Johnson-Cook model to estimate the influence of the DSA effect on the strength of the material at high strain rates and temperatures. Furthermore, the model quantifies how the microstructure affects the strength of the material and the strength of the DSA-hardening
    corecore