122 research outputs found

    Live Imaging of Antifungal Activity by Human Primary Neutrophils and Monocytes in Response to A. fumigatus

    Get PDF
    This work has been supported by the MRC and the University of Aberdeen (MRC Centre for Medical Mycology) and by the Wellcome Trust Strategic Award - Medical Mycology Fungal Immunology (SFB, JMB, JK, AW). A special thank you is given to the support from the Chloe fund. TMH is supported by a grant from the National institute of health (NIH, code RO1 093808) and the Memorial Sloan Kettering Cancer Center is supported by NIH grant P30 CA008748. Additionally, TMH is an investigator in the Pathogenesis of Infectious Disease supported by the Burroughs Wellcome Fund. We wish to thank the Aberdeen Microscopy and Histology Facility for their help and support.Peer reviewedPublisher PD

    In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis

    Get PDF
    BACKGROUND: Invasive aspergillosis (IA) is a major cause of infectious morbidity and mortality in immune compromised patients. Studies on the pathogenesis of IA have been limited by the difficulty to monitor disease progression in real-time. For real-time monitoring of the infection, we recently engineered a bioluminescent A. fumigatus strain. RESULTS: In this study, we demonstrate that bioluminescence imaging can track the progression of IA at different anatomic locations in a murine model of disease that recapitulates the natural route of infection. To define the temporal and functional requirements of distinct innate immune cellular subsets in host defense against respiratory A. fumigatus infection, we examined the development and progression of IA using bioluminescence imaging and histopathologic analysis in mice with four different types of pharmacologic or numeric defects in innate immune function that target resident and recruited phagocyte subsets. While bioluminescence imaging can track the progression and location of invasive disease in vivo, signals can be attenuated by severe inflammation and associated tissue hypoxia. However, especially under non-inflammatory conditions, such as cyclophosphamide treatment, an increasing bioluminescence signal reflects the increasing biomass of alive fungal cells. CONCLUSIONS: Imaging studies allowed an in vivo correlation between the onset, peak, and kinetics of hyphal tissue invasion from the lung under conditions of functional or numeric inactivation of phagocytes and sheds light on the germination speed of conidia under the different immunosuppression regimens. Conditions of high inflammation -either mediated by neutrophil influx under corticosteroid treatment or by monocytes recruited during antibody-mediated depletion of neutrophils- were associated with rapid conidial germination and caused an early rise in bioluminescence post-infection. In contrast, 80% alveolar macrophage depletion failed to trigger a bioluminescent signal, consistent with the notion that neutrophil recruitment is essential for early host defense, while alveolar macrophage depletion can be functionally compensated

    In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis

    Get PDF
    Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses

    Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific β-Glucan Display

    Get PDF
    Inhalation of fungal spores (conidia) occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-α/MIP-2 secretion by alveolar macrophages. Fungal β-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal β-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed β-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-α/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores

    CARD9<sup>+</sup> microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment

    Get PDF
    This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Disease, National Institutes of Health, as well as NIH grants awarded to TMH (R01 093808), SGF (R01AI124566) and SRL (R01CA161373). Additional funding was provided by the Burroughs Wellcome Fund (awarded to TMH), the Wellcome Trust (102705, 097377; awarded to GDB), the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1; awarded to GDB). The authors additionally thank Celeste Huaman for care and screening of the Malt1 793 -/- mice.Peer reviewedPostprin

    Systematic Analysis of Copy Number Variations in the Pathogenic Yeast Candida parapsilosis Identifies a Gene Amplification in RTA3 That is Associated with Drug Resistance

    Get PDF
    We analyzed the genomes of 170 C. parapsilosis isolates and identified multiple copy number variations (CNVs). We identified two genes, RTA3 (CPAR2_104610) and ARR3 (CPAR2_601050), each of which was the target of multiple independent amplification events. Phylogenetic analysis shows that most of these amplifications originated only once. For ARR3, which encodes a putative arsenate transporter, 8 distinct CNVs were identified, ranging in size from 2.3 kb to 10.5 kb with 3 to 23 copies. For RTA3, 16 distinct CNVs were identified, ranging in size from 0.3 kb to 4.5 kb with 2 to ~50 copies. One unusual amplification resulted in a DUP-TRP/INV-DUP structure similar to some human CNVs. RTA3 encodes a putative phosphatidylcholine (PC) floppase which is known to regulate the inward translocation of PC in Candida albicans. We found that an increased copy number of RTA3 correlated with resistance to miltefosine, an alkylphosphocholine drug that affects PC metabolism. Additionally, we conducted an adaptive laboratory evolution experiment in which two C. parapsilosis isolates were cultured in increasing concentrations of miltefosine. Two genes, CPAR2_303950 and CPAR2_102700, coding for putative PC flippases homologous to S. cerevisiae DNF1 gained homozygous protein-disrupting mutations in the evolved strains. Overall, our results show that C. parapsilosis can gain resistance to miltefosine, a drug that has recently been granted orphan drug designation approval by the United States Food and Drug Administration for the treatment of invasive candidiasis, through both CNVs or loss-of-function alleles in one of the flippase genes

    Inflammatory ER stress responses dictate the immunopathogenic progression of systemic candidiasis

    Get PDF
    Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1a-dependent overexpression of key inflammatory mediators such as IL-1Β, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE), and TNF-α. Selective ablation of IRE1a in leukocytes, or treatment with an IRE1a pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.This work was supported by NIH T32 5T32AI134632-02 and F31CA257631 training grants (to AE); the Cancer Research Institute–Irvington Institute Postdoctoral Fellowship Award (to CSC and CS); NIH/NCI Cancer Center Support Grant P30 CA008748 (to SFS); and NIH R01 NS114653 and R21 CA248106 (to EARS). This work was also supported by a Junta de Castilla y León/Fondo Social Europeo Fellowship (to JJF); the CSIC’s Global Health Platform (PTI Salud Global, to MSC); Plan Nacional de Salud y Farmacia Grant PID2020-113751RB-I00, funded by MCIN/AEI/ 10.13039/501100011033 (to MSC); Junta de Castilla y León/Fondo Social Europeo Grant VA175P20 (to MSC); NIH grant R01 DK121977 and the Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Diseases Award (to IDI); NIH R37 093808, NIH R01 139632, NIH R21 142639, and the Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Diseases (to TMH); NIH R01 NS114653, NIH R01 CA271619, NIH R21 CA248106, US Department of Defense OC150431, OC200166, and OC200224, the Mark Foundation for Cancer Research ASPIRE Award, and The Pershing Square Sohn Foundation (to JRCR)

    Immunocompromised Host Pneumonia: Definitions and Diagnostic Criteria: An Official American Thoracic Society Workshop Report

    Get PDF
    Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria

    In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis

    Get PDF
    Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses
    corecore