86 research outputs found

    Pharmacology of Heparin and Related Drugs: An Update

    Get PDF
    Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed to the pentasaccharide sequence which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been determined that heparin also has antithrombotic action through interference of the formation of neutrophil extracellular traps which have been determined to play a role in thrombosis. This demonstrated a well-known observation that heparin, given it is a highly negatively charged polysaccharide, interacts with a broad range of biomolecules demonstrating attenuating effect. Since our previous review, there has been an increased interest in these non-anticoagulant effects of heparin, with the beneficial role in patients infected with sars2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. Significance Statement This state of the art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immuno-thrombosis observations, and as non-anticoagulant including a role in the treatment of sars-coronavirus and inflammatory conditions

    Neutralization of the anti-coagulant effects of heparin by histones in blood plasma and purified systems

    Get PDF
    SummaryNeutrophil extracellular traps (NETs) composed primarily of DNA and histones are a link between infection, inflammation and coagulation. NETs promote coagulation and approaches to destabilise NETs have been explored to reduce thrombosis and treat sepsis. Heparinoids bind histones and we report quantitative studies in plasma and purified systems to better understand physiological consequences. Unfractionated heparin (UFH) was investigated by activated partial thromboplastin time (APTT) and alongside low-molecular-weight heparins (LMWH) in purified systems with thrombin or factor Xa (FXa) and antithrombin (AT) to measure the sensitivity of UFH or LMWH to histones. A method was developed to assess the effectiveness of DNA and non-anticoagulant heparinoids as anti-histones. Histones effectively neutralised UFH, the IC50 value for neutralisation of 0.2 IU/ml UFH was 1.8 Ī¼g/ml histones in APTT and 4.6 Ī¼g/ml against 0.6 IU/ml UFH in a purified system. Histones also inhibited the activities of LMWHs with thrombin (IC50 6.1 and 11.0 Ī¼g/ml histones, for different LMWHs) or FXa (IC50 7.8 and 7.0 Ī¼g/ml histones). Direct interactions of UFH and LMWH with DNA and histones were explored by surface plasmon resonance, while rheology studies showed complex effects of histones, UFH and LMWH on clot resilience. A conclusion from these studies is that anticoagulation by UFH and LMWH will be compromised by high affinity binding to circulating histones even in the presence of DNA. A complete understanding of the effects of histones, DNA and heparins on the haemostatic system must include an appreciation of direct effects on fibrin and clot structure.</jats:p

    Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: insights into the physiological role of endogenous heparin

    Get PDF
    We acknowledge the support of the Wellcome Trust for a grant to RL, CPP and NVR to support some of this work.The properties of commercially prepared heparin as an anticoagulant and antithrombotic agent in medicine are better understood than is the physiological role of heparin in its native form, where it is uniquely found in the secretory granules of mast cells. In the present study we have isolated and characterised the glycosaminoglycans (GAGs) released from degranulating rat peritoneal mast cells. Analysis of the GAGs by NMR spectroscopy showed the presence of both heparin and the galactosaminoglycan dermatan sulphate; heparinase digestion profiles and measurements of anticoagulant activity were consistent with this finding. The rat peritoneal mast cell GAGs significantly inhibited accumulation of leukocytes in the rat peritoneal cavity in response to IL-1Ī² (pĀ <Ā 0.05, nĀ =Ā 6/group), and inhibited adhesion and diapedesis of leukocytes in the inflamed rat cremasteric microcirculation in response to LPS (pĀ <Ā 0.001, nĀ =Ā 4/group). FTIR spectra of human umbilical vein endothelial cells (HUVECs) were altered by treatment of the cells with heparin degrading enzymes, and restored by the addition of exogenous heparin. In conclusion, we have shown that rat peritoneal mast cells contain a mixture of GAGs that possess anticoagulant and anti-inflammatory properties.PostprintPeer reviewe

    High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS

    Get PDF
    Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of saccharide units and in post polymerization alterations at various positions, making these complex molecules challenging to analyse. Here we describe an approach that enables small quantities (< 200 ng) of over 400 different GAGs to be analysed within a short time frame (3-4 hours). Time of flight secondary ion mass spectrometry (ToF-SIMS) together with multivariate analysis is used to analyse the entire set of GAG samples. Resultant spectra are derived from the whole molecules and do not require pre-digestion. All 6 possible GAG types are successfully discriminated, both alone and in the presence of fibronectin. We also distinguish between pharmaceutical grade heparin, derived from different animal species and from different suppliers, to a sensitivity as low as 0.001 wt%. This approach is likely to be highly beneficial in the quality control of GAGs produced for therapeutic applications and for characterising GAGs within biomaterials or from in vitro cell culture

    By-Products of Heparin Production Provide a Diverse Source of Heparin-like and Heparan Sulfate Glycosaminoglycans.

    Get PDF
    Global production of pharmaceutical heparin (Hp) is increasing, and the production process from raw mucosal material results in large amounts of waste by-products. These contain lower sulfated Hp-like and heparan sulfate (HS), as well as other glycosaminoglycans, which are bioactive entities with pharmaceutical potential. Here we describe the first purification, structural and functional characterisation of Hp-like and HS polysaccharides from the four major by-product fractions of standard heparin production. Analysis of the by-products by disaccharide composition analysis and NMR demonstrated a range of structural characteristics which differentiate them from Hp (particularly reduced sulfation and sulfated disaccharide content), and that they are each distinct. Functional properties of the purified by-products varied, each displaying distinct anticoagulant profiles in different assays, and all exhibiting significantly lower global and specific inhibition of the coagulation pathway than Hp. The by-products retained the ability to promote cell proliferation via fibroblast growth factor receptor signalling, with only minor differences between them. These collective analyses indicate that they represent an untapped and economical source of structurally-diverse Hp-like and HS polysaccharides with the potential for enhancing future structure-activity studies and uncovering new biomedical applications of these important natural products

    Towards an Economy of Higher Education

    Get PDF
    This paper draws a distinction between ways thinking and acting, and hence of policy and practice in higher education, in terms of different kinds of economy: economies of exchange and economies of excess. Crucial features of economies of exchange are outlined and their presence in prevailing conceptions of teaching and learning is illustrated. These are contrasted with other possible forms of practice, which in turn bring to light the nature of an economy of excess. In more philosophical terms, and to expand on the picture, economies of excess are elaborated with reference, first, to the understanding of alterity in the work of Emmanuel Levinas and, second, to the idea of Dionysian intensity that is to be found in Nietzsche. In the light of critical comment on some current directions in policy and practice, the implications of these ways of thinking for the administrator, the teacher and the student in higher education are explored

    Fucosylated chondroitin sulfates from the body wall of the sea cucumber <i>Holothuria forskali</i>. Conformation, selectin binding and biological activity

    Get PDF
    Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: ā†’3)GalNAcĪ²4,6S(1ā†’4) [FucĪ±X(1ā†’3)]GlcAĪ²(1ā†’, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Lex blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu2+-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention
    • ā€¦
    corecore