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High sensitivity analysis of nanogram quantities
of glycosaminoglycans using ToF-SIMS
Andrew L. Hook 1✉, John Hogwood2, Elaine Gray2,3, Barbara Mulloy3 & Catherine L. R. Merry 4

Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of sac-

charide units and in post polymerisation alterations at various positions, making these

complex molecules challenging to analyse. Here we describe an approach that enables small

quantities (<200 ng) of over 400 different GAGs to be analysed within a short time frame

(3–4 h). Time of flight secondary ion mass spectrometry (ToF-SIMS) together with multi-

variate analysis is used to analyse the entire set of GAG samples. Resultant spectra are

derived from the whole molecules and do not require pre-digestion. All 6 possible GAG types

are successfully discriminated, both alone and in the presence of fibronectin. We also dis-

tinguish between pharmaceutical grade heparin, derived from different animal species and

from different suppliers, to a sensitivity as low as 0.001 wt%. This approach is likely to be

highly beneficial in the quality control of GAGs produced for therapeutic applications and for

characterising GAGs within biomaterials or from in vitro cell culture.
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G lycosaminoglycans (GAGs) are polysaccharides found
within cells, within the pericellular space and as a part of
the extracellular matrix (ECM). GAGs regulate biological

processes, such as self-renewal, differentiation, growth, inhibition,
microbial invasion and defence, with their broad structural
diversity and differential localisation accommodating specific
interactions with hundreds of binding proteins1,2. The complexity
of GAGs, including chain length (polymerisation machinery),
modification (epimerisation and sulphation of the hydroxyl
groups at various positions on the saccharide units) and core
protein attachment is orchestrated by enzyme mediated synthesis
and allows for GAGs to have greater information carrying
capacity than the more commonly studied biological polymers,
nucleic acids and proteins.

The five sulfated GAGs, heparin, heparan sulphate (HS),
chondroitin sulphate (CS), dermatan sulphate (DS) and keratan
sulphate (KS) are synthesised attached to protein cores as pro-
teoglycans, unlike non-sulfated hyaluronan (HA) which is
extruded into the pericellular space3. Heparin, in the form of a
pure polysaccharide released from its core protein, is a globally
used anticoagulant and antithrombotic and is currently being
considered for anti-inflammatory indications such as chronic
obstructive pulmonary disease4. Other GAG types are now also
increasingly being applied clinically, for example, as treatments
for cancer and osteoarthritis, as anti-viral therapies5 and to
support wound healing6–9. The rapid and sensitive structural
characterisation of GAGs is critical to maintain the standardisa-
tion and safety of these animal-derived biomolecules for medical
use, as was highlighted by the contamination of heparin samples
with over-sulfated CS (OSCS) that led to patient hypotension and
death10. The ongoing biosecurity of heparin is a significant
concern to healthcare systems around the world, necessitating
continued efforts to improve heparin analysis and provide syn-
thetic production routes.

Typically, chemical analysis of pharmaceutical GAGs is
achieved using nuclear magnetic resonance (NMR) and high
performance liquid chromatography (HPLC) methods11–14.
Simple 1H-NMR has been shown to detect 0.1 wt% contaminat-
ing OSCS within heparin15, whilst HPLC achieved a limit of
detection of 0.03 wt% for OSCS in heparin and remains the gold
standard analysis technique for heparin characterisation14.
However, some of these approaches require >10 mg of sample, as
well as specialised equipment and expert analysis and, therefore,
suffer from low throughput16. Mass spectrometry plays a leading
role in GAG glycomics utilising soft ionisation techniques such as
electrospray ionisation17, however, analysis of whole sulfated
GAGs remains difficult18. This is particularly problematic for the
characterisation of heparin as whole-molecule analysis is neces-
sary to detect inter-species contamination of porcine-derived
material used for medical applications19. If porcine sources
become limited, for example as a consequence of recent outbreaks
of African Swine Fever20, the relatively poor detection of non-
porcine material (a limit of detection (LOD) of approximately 2
wt% for detecting a bovine contamination in porcine heparin21) is
unlikely to be sufficient to protect supplies.

For biomaterial applications requiring surface analysis, X-ray
photoelectron spectroscopy has been favoured due to quantitative
readouts but is unable to resolve the subtle chemical difference
between different GAGs22. Time-of-flight secondary ion mass
spectrometry (ToF-SIMS) is a promising approach for GAG
analysis as spectral acquisition is rapid (≈20 s per sample) and can
be applied to whole molecules without the need for purification or
enzymatic digestion. ToF-SIMS has been applied to assess the
modification of sugars at surfaces but has typically been limited to
mono- or di-saccharides23–28. Studies of larger polysaccharides,
typically heparin or HA, focussed on low mass fragments that

have limited utility to discriminate between the different GAG
types29–35.

In this study ToF-SIMS was used to analyse a microarray
containing all six GAG types (analytical preparations of HS, CS,
DS, KS, HA, porcine mucosal (PM) heparin, and clinical grade
heparin from porcine mucosa, bovine mucosa and bovine
lung). Together with principal component analysis (PCA) and
partial least square (PLS) regression, this approach was used to
chemically distinguish between the different GAG classes in a
semi-quantitative manner, whilst notably being able to discern
differences between heparin samples derived from different ani-
mal sources and different manufacturer batches. The combina-
tion of high throughput analysis with high chemical sensitivity
indicated the feasibility of this method for quality control of
pharmaceutical heparin, detecting possible process related
impurities as well as contaminants, and for enabling the surface
analysis of GAG-modified materials to facilitate the development
of GAG-functional biomaterials.

Results
GAG microarray analysis. Arrays of GAG solutions were pre-
pared using ink-jet printing (Fig. 1a) onto poly-L-lysine (PLL)-
coated glass slides, selected for the ability of PLL to adhere GAGs
due to ionic interactions, and possible other supramolecular
interactions such as hydrogen binding (Supplementary Note 1;
Supplementary Figs. 1–2)36. Ink-jet printing also enabled the rapid
generation of GAG mixtures via in-spot mixing (Supplementary
Note 2; Supplementary Figs. 3–4, Supplementary Table 1).
Microarrays enable the rapid assessment of libraries of molecules,
require small amounts of material (ng) and are compatible with
high throughput surface analysis37. Microarrays have been widely
used to assess DNA, proteins and their analogues (oligonucleo-
tides and peptides)38–43. Glycan and GAG microarrays have also
been used in alternative applications, but not previously for high-
throughput GAG structural analysis44,45. In total, approximately
160 ng of material was deposited per spot. Resultant arrays were
assessed by bright field microscopy and ToF-SIMS (Fig. 1b, c). All
printed spots appeared to be both physically and chemically dis-
tinct (Fig. 1c and d). The absence of sulphate signal (SO4

−) for HA
samples suggested no carry-over between print runs (Fig. 1c).
Regions of interest for each spot were determined from the SO4

−

ion image to enable extraction of spectra for each sample (Fig. 1d,
e). A typical spectrum from porcine mucosa (PM) derived heparin
exhibited high intensity ions associated with sulphate (SO2

−,
SO3

−, C3HSO5
+) and amide (CN−, CNO−) groups as well as

highly oxygenated fragments (C3H3O2
−, C2O3

+) (Fig. 1d). Ions
associated with the sulphate group were absent from a typical
spectrum taken from a HA sample (Fig. 1e).

Differentiation of GAGs using principal component analysis.
Each sample typically had approximately 900 different ions (both
positive and negative). To effectively assess the differences
between samples, principal component analysis was used to
reduce the dimensionality of the multispectral dataset. Addi-
tionally, a sparse dataset was generated to remove uninformative
variables not associated with variance between sample types. This
is important for the high-dimension dataset where PCA results
are difficult to interpret and the sample eigenvectors are not
always consistent estimators whilst regression approaches are
susceptible to over-fitting46. A number of approaches have been
used to develop sparsity for PCA47, including recursive feature
selection48. In this study, recursive feature addition was used to
generate a sparse dataset using the maximisation of the distance
between the means of the sample sets as a selection criteria.
Recursive feature elimination was then used, using the
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minimisation of the overlap between 95% confidence ellipses
from different sample sets as a selection criterion, to select fea-
tures that would differentiate between samples with sufficient
confidence (Supplementary Figs. 5–6, Supplementary Table 2).
To avoid over-fitting, the sample sets were split into training and
test sets at a 7:3 ratio (training:test). Test samples were required to
fall within the 95% confidence ellipse associated with the prin-
cipal components describing the variance between samples. The
final sparse dataset was further tested for its ability to robustly
assess the differences between samples by ensuring sample sets
remained separated with multiple randomly generated training/
test sets. Creation of a sparse dataset by this method resulted in
83.5% of the variance captured by PCA to be associated with the
difference between the biochemically similar GAGs CS and DS,
giving confidence that this approach could also work for a
broader set of materials (Supplementary Fig. 7).

The utility of PCA with a sparse dataset to identify differences
in GAG samples was assessed for 5 different medical grade PM-
derived heparin samples, bovine lung- (BL) and bovine mucosa-
(BM) derived heparin, OSCS, CS and a heparin sample
contaminated with 1 wt% OSCS from the heparin crisis. A sparse
dataset containing 12 different ions was selected. By considering

the scores for PC2 and PC3, the CS samples and contaminated
heparin sample were all successfully differentiated from all other
heparin samples (Supplementary Fig. 8).

As the ultimate assessment of this approach, samples of each of
the 6 GAG types were analysed together to assess whether each
sample could be chemically discerned. Without sparsity, PCA was
able to successfully differentiate between the KS, HA and OSCS
samples, with and without variance scaling (Supplementary
Fig. 9a, b). However, separation of the other GAG samples was
not achieved, particularly between the different heparin sample
sets. The scree plot indicated 1–9 PCs captured variance not
associated with noise (Supplementary Fig. 9c). After generation of
a sparse dataset, the variance captured by the first 6 principal
components (PCs) increased from 78% to 89% due to the removal
of features that corresponded to variance not associated with
differences between sample set (Supplementary Fig. 9c, d). A total
of 48 features were selected for the final sparse dataset that
corresponded to the minimum number of features required to
produce a high (>0.25) mean average area fraction of ellipses not
overlapping.

PCA of the sparse dataset was able to successfully separate all
16 GAG samples to 95% confidence (Figure2). Scores plots for

Fig. 1 Preparation and analysis of a GAG microarray. GAGs were derived from porcine mucosa (PM), bovine mucosa (BM) or bovine lung (BL). If
unspecified, samples are derived from PM. a Chemical structure of the main disaccharide of heparin, in which R1 and R2 are usually SO3

−. b Side view
image of piezo-dispensing glass nozzle used to dispense GAG solutions to prepare an array. Droplet detection highlighted within the marked region of
interest. Typical droplet volume was 320–340 pL. c Brightfield microscopy image of prepared array (where print order was sequential from top to bottom)
and d a corresponding SO4

− ion image acquired using ToF-SIMS. Intensity scale indicates the measured normalised ion count depicted in d. All spots
remained distinct and no SO2

− signal was observed from HA. Region of interest selection for extracting the spectrum from each spot was based upon the
high intensity region from the SO2

− signal, or low intensity area for HA. e–f Extracted ToF-SIMS spectra for e porcine mucosa derived heparin f HA.
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PCs 1-2 showed clustering of the 6 main types of GAG (Fig. 2a).
Further separation of the different types of heparin including
separation of heparin from PM, BM or BL and different batches
of heparin from PM was achieved by considering PCs 3–6
(Fig. 2b, c). Hierarchical cluster analysis was used to classify the
different samples based upon their Euclidean distance. The
outcome of this unsupervised classification approach is shown as
a dendrogram (Fig. 2d), where samples that are most similar are
positioned together. In all cases, samples were clustered within
their correct sample group, including the test set, with the
exception of single replicates of two heparin PM batches and one
replicate of the heparin BM sample.

Only those ions with a possible assignment based upon the
elemental composition of GAGs were selected (C, O, H, N, S).
Each ion was assigned a loading for each PC, shown in
Supplementary Table 3. Possible assignments for each of the 48
ions for the key PCs is listed in Supplementary Table 3. A number
of ions likely associated with sulphate groups were selected,
including ions SN+ and SNO2

−, as well as larger ions such as
C10H11SO4

−. This suggests that part of the variance captured by
the PCA was associated with the sulfation patterns on the GAGs.
Ions likely associated with di- and tri- saccharides, such as
C18H33SO5

+, C18H38O9
+, were also selected. Further interpreta-

tion of the relation between the ions identified and the GAG
structures is limited due to the relatively low mass resolution of
the ToF mass analyser.

To test the capability of ToF-SIMS analysis to chemically
distinguish between samples in a more complex biological
environment, each of the 6 GAG types were added to a
fibronectin (FN) solution, printed as a microarray and analysed
by ToF-SIMS. FN is a common component of biological ECMs as
well as serum and plasma. After generating a sparse dataset, the
multispectral data was assessed for its ability to distinguish
between the different samples using PCA and hierarchical cluster
analysis. All 6 GAG types were chemically differentiated from
each other, and from pure FN (Fig. 3a), where all samples,

including the test sets, were successfully categorised using
hierarchical cluster analysis (Fig. 3a). Possible assignments for
the 18 ions selected for this sparse dataset and their loadings are
shown (Supplementary Table 4). Similar to the model without
FN, ions containing sulphate groups (CHSO−, C3HSO2

−) were
present in the model. Most of the ions selected were small in
nature and likely derived from a monosaccharide. This may be
due to a reduced yield of higher molecular weight ions associated
with GAGs from within a protein matrix. Additionally, ions likely
associated with FN (CH4N+) were also selected.

Quantification of spiked samples using partial least square
regression. To assess the sensitivity of the analysis methodology
to adulteration, a PM heparin was spiked with increasing con-
centrations of either OSCS, BM heparin or BL heparin. The ToF-
SIMS spectral data was correlated with the fraction of spiking
agent using PLS regression, as has been done previously for
correlating water contact angle or protein adsorption with ToF-
SIMS data49,50. Initially, a sparse dataset was selected for each
sample set by least absolute shrinkage and selection operator
(LASSO) to minimise over-fitting by removal of uninformative
features51. The number of latent variables used was selected based
upon the minimisation of the root mean square error of cross
validation (Supplementary Fig. 11). Plots of the measured frac-
tions of spiking agent and those predicted from the ToF-SIMS
data using the PLS model are shown in Supplementary Fig. 12. A
high correlation (R2 > 0.94) between measured and predicted
values was observed for samples spiked with either OSCS or
heparin BM, suggesting that the ToF-SIMS data was able to
distinguish differences in samples down to 0.001 wt%. This was
confirmed by PCA of the same samples, which demonstrated
separation between non-spiked samples and the samples spiked at
0.001 wt% to 95% confidence (Supplementary Fig. 13, Supple-
mentary Tables 5–7). A weaker correlation (R2= 0.88) was
observed for the samples spiked with BL heparin (Supplementary
Fig. 12). PCA of these samples showed that the non-spiked

Fig. 2 PCA of 16 different GAGs. a–c Scores plots for the 6 first PCs for all 16 samples, including different heparin (HP) samples. Training sets are closed
symbols and test sets are open symbols. The 95% confidence ellipse is shown for each sample set. a PC1 and PC2, b PC3 and PC4, and c PC5 and PC6.
d Dendrogram showing hierarchical clustering of GAG samples based upon the scores for PCs 1–6. Training samples are shown as a dashed line and test
samples are shown as a solid line. Lines have been coloured to match sample identity. The associated symbol for each sample type is shown beneath each
cluster. e Legend showing symbols corresponding to the GAG type.
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sample and the 0.001 wt% sample could not be separated to 95%
confidence (Supplementary Fig. 13b). However, a linear response
between the measured and predicted fraction of BL heparin was
observed down to 0.01 wt%, suggesting that the analysis was
sensitive to this concentration. Similar R2 values were observed
for the training (70%) and test (30%) sets for all models, sug-
gesting there was no over-fitting.

The PLS models were used to predict the fraction of the
contaminant in each of the different heparin samples initially
assessed by PCA (Fig. 3b–d). The amount of OSCS predicted in
all heparin samples was below 0.001%, with the exception of the
analytical grade heparins, which had predicted OSCS fractions of
0.0009 and 0.002 wt%. High predicted fractions (≈100 wt%) were
predicted for the OSCS sample, whilst the sample with a known

OSCS adulteration of 1 wt% had a predicted OSCS fraction of 0.6
wt%. Quantitative analysis of samples using ToF-SIMS data is
limited by matrix effects52. Therefore, the PLS model was only
applicable to samples analysed within the same matrix environ-
ment as the training data. For predictions of the bovine-derived
heparin content, low values (1 × 10−5 wt%) were predicted for the
porcine-derived heparin samples with the exception of the
analytical grade samples and sample 4, which all had predicted
values of approximately 1 × 10−3 wt%. The lower purity of the
analytical grade heparin is expected, and our results indicate low
levels of OSCS contamination. The presence of bovine-derived
heparin in sample 4 was unexpected, but does coincide with lower
levels of anticoagulant activity observed for this sample
(Supplementary Table 8).

For completion, the PLS models were also applied to unrelated
GAG types, shown in Fig. 3b–d. Although it is possible to suggest
that high levels of OSCS were predicted in the DS and CS
samples, the predicted values are unreliable as the models were
trained for the detection of specific contaminants in heparin. The
successful separation of each of the 16 GAGs by PCA suggests
that, in principle, PLS models of pairwise mixtures of the other
GAG types could be prepared.

Each of the features selected for the PLS regression was
assigned a regression coefficient (RC) that informed how strongly
it influenced the model and whether it was associated with the
contaminant or PM heparin. Tables of possible assignments for
the ions selected for each model and their associated RCs are
shown in Supplementary Tables 9–11. For each model, ions likely
derived from mono- and di-saccharides were associated with PM
heparin (having a negative RC) including C13H29S2NO4

+,
C16H29N2O7

− and C32H56N3O12
−. Furthermore, ions containing

sulphate groups, such as CH4SNO2
−, C5HSNO6

− and C2SNO3
−

were also selected, suggesting the model includes information
both about the disaccharide sequence of the heparin molecules
and the sulfation pattern. The ions associated with the spiked
GAGs (OSCS, BM heparin and BL heparin) included ions likely
representative of the disaccharide sequence (C20H37SN2O5

−,
C12H29N2O7

+ and C22H43N2O7
+) or sulfation pattern

(KC5SNO−, C3H5SNO3
−, C2H3S+) of the spiked GAGs. There

is large uncertainty regarding the ion assignments, particularly for
large ions, due to the mass resolution of the ToF analyser. The
suggestions provided are based upon structures that match GAG
stoichiometry and have a minimal deviation between the
measured and theoretical values.

Assessment of heparin activity. The anticoagulant action of
heparin is chiefly due to its ability to potentiate the serine pro-
tease inhibitor antithrombin, a protein normally present in
plasma. Assays of antithrombin mediated inhibition of the clot-
ting factors thrombin (factor IIa) and of factor Xa, using purified
proteins, are used to determine the potency of clinical grade
heparin in International Units (IU)/mg. The Activated Partial
Thromboplastin Time (APTT) is a plasma-based method for
measuring anticoagulant activity.

The specific activities of five heparin samples were measured by
these three methods and the results are summarised in
Supplementary Table 5. A number of ions were found to
significantly (p < 0.001) correlate linearly (Pearson’s r > 0.75) with
each of the measures of activity, as shown in Supplementary
Fig. 14. The origin of these ions is not known but the correlations
suggest that they arise from structural factors that determine
anticoagulant activity, either very specifically in terms of the
rare pentasaccharide motif that determines affinity for
antithrombin53, or in more general terms such as overall degree
of sulfation. This link between the surface chemistry as measured

Fig. 3 Summary of multivariate analysis of mixed GAG samples. a PCA of
datasets from 6 GAG types mixed with FN. Dendrogram showing
hierarchical clustering of GAG samples based upon the scores for PCs 1 and
2 (Supplementary Fig. 10). Training samples are shown as a dashed line and
test samples are shown as a solid line. Lines have been coloured to match
the sample identity. Legend of sample identity shown with figure. b–d
Predicted values for the heparin/OSCS samples measured as a part of the
16 GAGs ( ), unrelated GAG types ( ) and heparin (HP) PM spiked with
b OSCS, c HP BM and d HP BL ( ) using the corresponding PLS models.
Error bars show ± 1 standard deviation unit, n= 10.
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by ToF-SIMS and a quantitative measure of biological activity is
unexpected.

Discussion
Analytical characterisation of GAGs underpins multiple aspects
of current GAG-related research, including the understanding of
their fundamental biological roles. GAGs are already important
pharmaceutical compounds (as discussed above for heparin) and
are increasingly being used for various therapeutic applications as
well as being incorporated into biomaterials for improved
biofunctionality54–57. Mass spectrometry techniques focus on the
analysis of oligosaccharides for the purposes of sequencing58,59.
The use of ToF-SIMS to analyse GAG samples on an arrayed
platform provides a methodology by which small quantities
(< 200 ng) of hundreds of different GAGs could be analysed
within a short time window (3–4 h). The resultant spectra were
derived from the whole molecules and did not require any pre-
digestion or pre-labelling of material. The analysis was informa-
tive of the GAG disaccharide sequence, sulfation pattern and
biological activity and enabled discernment between all 6 differ-
ent GAG types investigated.

The high throughput and sensitivity achievable by this system
is also important for the quality control of GAGs within
healthcare settings to ensure patient safety. For the most widely
used GAG in medicine, heparin, recent problems in pharma-
covigilance have been the spur to develop a battery of orthogonal
tests to ensure identity, purity and high specific bioactivity12.
Besides the detection of contaminants, whether introduced acci-
dentally or as deliberate adulteration, it is necessary to monitor
impurities in heparin that can arise both from co-purification of
related compounds such as chondroitin and dermatan sulphates
and from minor chemical modifications arising in the manu-
facturing process60,61. Whole molecule analysis is desirable to be
able to detect contaminants and process-related impurities in
active pharmaceutical ingredient of GAG-based products, for
example, detection of mixed-species heparin. Whilst whole
molecule analysis of GAGs has been achieved62, the approaches
are typically slow, require large amounts of samples and lack
sensitivity. We applied our protocol to pharmaceutical grade
heparin derived from different animal species and from different
suppliers. Our approach allowed for the clear identification of
heparin samples in terms of species of origin, and highly sensitive
detection of contaminants spiked into PM heparin, including a
sensitivity of 0.001 wt% of the addition of OSCS, the contaminant
associated with the heparin crisis, and to 0.01 wt% for BL heparin
in PM heparin. This approach is likely to be highly beneficial in
the quality control of GAGs produced for therapeutic applica-
tions and for characterising GAGs within biomaterial systems or
from in vitro cell culture.

The use of multivariate analysis approaches was necessary to
interrogate the multi-dimensional ToF-SIMS datasets. PCA has
been widely used to assess the variance within ToF-SIMS datasets
and was used here to be able to capture the variance between
different GAG samples, whilst PLS regression demonstrated that
the fraction of a spiked GAG could be predicted from the ToF-
SIMS spectra. Creation of sparse datasets was important to avoid
over-fitting data as well as to remove uninformative features. For
PCA, recursive feature selection identified the ions that captured
the variance between the different GAGs including within a more
complex biological environment containing fibronectin.

Implementation of the approach described as either a tool for
basic research or as a quality control methodology for heparin
manufacturer would require for the data readouts to be reached
without intervention of expert users. The data models established
in this study would provide a useful system that future samples

could be applied to, with the possibility to identify unknown
GAGs (PCA) or detect contamination within a sample (PLS).
Unsupervised approaches like hierarchical cluster analysis pro-
vide a mechanism by which useful readouts can be obtained
without any user intervention. The models can also easily be
further expanded and made more robust through the addition of
further control samples, whilst models focussing on a single GAG
type are also easily achievable. The approach therefore, has broad
applicability and can be readily adapted to various GAG-based
applications.

Methods
Materials. HS Na salt from porcine mucosa (Iduron), DS Na salt from porcine
mucosa (Average Mw = 41,000, Iduron), CS B Na salt from porcine mucosa
(Sigma-Aldrich), HA Na salt from Streptococcus equi (Mw= 15,000–30,000,
Sigma-Aldrich), heparin from porcine mucosa (Mw= 5000, Fisher Scientific) were
used as received. GAGs were prepared as standard solutions of 5 mg/ml in ultra-
pure water (Purelab Ultra, ELGA LabWater). Heparin samples received from the
NIBSC heparin archive. KS Na salt was derived from bovine corneal. Fibronectin
was derived from bovine plasma (Sigma-Aldrich lot#101M7012V). Poly-L-lysine
coated slides (Poly-Prep, Sigma-Aldrich), aminoalkylsilane functionalised slides
(Silane-Prep, Sigma-Aldrich), tissue culture polystyrene (TCPS, Nunclon Delta,
ThermoFisher Scientific), allylamine plasma polymer coated polystyrene (EpranEx,
BD Biosciences) and bare glass slides (Corning) were used as received.

Microarray preparation. Arrays were prepared using an s11 sciFLEXARRAYER
dispensing system (Scienion) using a glass piezo dispense capillary (P-2020, Sci-
enion). Drop volumes were ≈ 300 pL, as measured using the drop shape analyser
tool (Scienion) prior to each run. Print runs were conducted at a relative humidity
of 65 % at room temperature. GAG solutions were diluted to 2–5 mg/ml in a
polypropylene 384-well plate (Corstar) in ultra-pure water (18.2 MΩ.cm) with or
without 1 mg/ml fibronectin. For in-spot mixing, 0–150 nL of water was printed
and subsequently GAGs were dosed into the water droplets to facilitate mixing
prior to surface adsorption. The nozzle was flushed with 250 μL of water whilst the
outside of the nozzle was washed with copious amounts of water between printing
different samples.

ToF-SIMS analysis. Time-of-flight secondary ion mass spectrometry measure-
ments were conducted using a ToF-SIMS IV (IONTOF GmbH, Münster, Ger-
many) instrument operated using a 25 keV Bi3+ primary ion source exhibiting a
pulsed target current of >0.3 pA. Samples were scanned at a pixel density of 512
pixels per mm, with fifteen shots per pixel over a given area. An ion dose of 2.45 ×
101 ions per cm2 was applied to each sample area ensuring that static conditions
were maintained throughout. Both positive and negative secondary ion spectra
were collected (mass resolution of >7000 at m/z= 29). Owing to the non-
conductive nature of the samples, charge compensation was applied in the form of
a low energy (20 eV) electron floodgun. Patch areas of 0.5 × 0.5 mm were acquired
at a resolution of 256 × 256 pixels by rastering the primary ion beam over the patch
using a ‘random raster’ path sequence. Patch areas were sequentially acquired over
the entire microarray using programmed stage movements through the macro-
raster stage function. The patch areas were combined into a mosaic image, allowing
all patches to be processed together. A peak list was produced using the peak search
tool (SurfaceLab 6, IONTOF), minimum counts set to 100, maximum background
set to 0.8. To ensure the peak search tool had successfully identified peaks, all ions
of interest were visually inspected. Regions associated with each polymer spot were
then extracted and recalibrated, and the peak list was applied to produce an
individual spectrum for each polymer. In total, 412 positive and 460 negative ion
peaks were identified. Peak assignments were achieved using a custom built Visual
Basic Application algorithm (PeakAssigner v2.6)63. Only peaks with a chemical
assignment derived from C, S, O, N and H within 100 ppm were used for PCA.

Light microscopy. Phase contrast microscopy images were acquired using an
Olympus IX51 microscope using a 40× objective, NA= 0.13. The microscope was
equipped with a Smart Imaging System (IMSTAR) using Fluo/LightVision software
(v6.04 K).

Principal component analysis. A microarray of samples was initially prepared to
enable a large number of samples to be rapidly assessed. The arrays were analysed
by ToF-SIMS and spectra were obtained for each sample. Datasets were variance
scaled and mean-centred and replicate measurements were split into training
(70%) and test (30%) sets.

Principal component analysis (PCA) was conducted using the function ‘pca’
within Matlab R2018a (9.4.0.813654) on the full dataset. The scree plots were used
to identify the total number of latent variables associated with meaningful variance
by fitting a linear curve to high latent variable values (typically 15–20) and
observing where the variance explained departed from linearity for lower numbers
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of latent variables. A sparse dataset was then created by recursive feature addition
using the minimisation of confidence ellipse overlap as a weighting from the scores
plots of relevant latent variables. After each feature addition the resulting models
were checked to ensure the test datasets fell within the 95% confidence limits of the
training datasets. The minimum number of variables required to achieve the
minimum amount of ellipse overlap was selected. PCA was conducted on the final
sparse dataset to assess differences between samples. The function ‘linkage’ within
Matlab 2018a (9.4.0.813654) was used for hierarchical cluster analysis using the
scores of relevant latent variables from the final PCA.

All data processing was conducted using a custom-built Matlab project.

Partial least square regression. Partial least square regression was conducted in
Matlab R2018a (9.4.0.813654) using the plsregress function, that utilises the
SIMPLS algorithm. The ToF-SIMS spectra, variance scaled and mean-centred prior
to analysis, was used as a set of predictors whilst the concentration of spiked agent
was used as the response. Replicate measurements were split into training (70%)
and test (30%) sets. Sparse datasets were produced by LASSO using the lassoglm
function, with the lambda value selected based upon the minimisation of the
standard error. The final PLS models used the sparse datasets, and the number of
latent variables was selected as the minimisation of the root mean square error of
cross-validation.

Data availability
Data used to produce figures is available at the University of Nottingham data repository
https://doi.org/10.17639/nott.7105. The Matlab project used for data processing is
available at github https://github.com/fishhooky/PCABundle.
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