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1. Introduction 

There is considerable interest in the development of marine based molecules 

for the treatment of a variety of human conditions including pain, cancer [1, 2], 

thrombosis [3] and a range of inflammatory diseases [2, 4-7].  In the context of 

inflammatory diseases, the rationale for this development is the unequivocal 

demonstration that endogenous glycosaminoglycans (GAGs), like heparin, can 

modulate inflammatory responses in vivo [8]. In addition, these anti-inflammatory 

properties can be mimicked by non-anticoagulant species of heparin such as O-

desulfated heparin [9, 10].  Heparin is a polysaccharide that acts via a wide range of 

anti-inflammatory mechanisms, which makes it a broad spectrum anti-inflammatory 

drug in addition to, and independent of, its anticoagulant activities [11].   The 

discovery of novel polysaccharides that share the anti-inflammatory actions of 

heparin, whilst lacking anticoagulant activity, provides the basis for the development 

of a novel class of anti-inflammatory drugs. The ability of heparin to bind to certain 

adhesion molecules that are integral to the inflammatory process, like P- and L-

selectin, is to a large extent dependent on the protein surface charge distribution and 

the complementary sulfation pattern of the heparin [12, 13].  For example, heparin 

binding to P- and L-selectin prevents leukocyte adhesion to vascular endothelial cells, 

and hence, transmigration to inflammatory sites [2, 14]. Additionally, heparin shows 

other anti-inflammatory activities, the precise mechanism(s) of which are not yet fully 

understood [15]. 

 

The anti-inflammatory activity of heparin and related molecules has been 

tested in numerous clinical trials with some success [15], although to date only 

pentosan polysulfate is approved for the clinical treatment of an inflammatory 
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condition, interstitial cystitis [16], and as an  intra-articular treatment for osteoarthritis 

in veterinary medicine.  Nonetheless, there is increasing evidence supporting the use 

of heparin like molecules in the treatment of inflammatory conditions of the 

respiratory tract.  For example, heparin has been shown to be effective in patients with 

chronic obstructive pulmonary disease (COPD) [17], asthma [18] and allergic rhinitis 

[19]. However, the anticoagulant properties of heparin limit the wider therapeutic 

utilisation of this drug in the treatment of inflammatory diseases, where anticoagulant 

activity is usually not desirable. Whilst the topical administration of heparin to 

mucosal surfaces in the respiratory tract is associated with limited systemic 

anticoagulant activity [20],  the development of a non-anticoagulant molecule 

mimicking the anti-inflammatory effects of heparin would be preferable.  Examples of 

this approach already exist and include a heparin-derived hypersulfated disaccharide 

that is effective against allergic inflammation in subjects with asthma [21].   

Traditionally heparin is prepared from porcine and increasingly bovine 

sources. However, there are cultural sensitivities surrounding the use of porcine 

products in some communities and with the use of bovine-based material, a possibility 

of adverse effects exists, e.g. the occurrence of spongiform encephalopathy (BSE).  

Therefore a number of marine based polysaccharides has been evaluated for their anti-

inflammatory activity [6, 22], as these eliminate the challenges and risks associated 

with molecules sourced from mammals [23]. One of the polysaccharides that has 

often been extracted from marine sources is dermatan sulfate, another member of the 

GAG family that has been shown to have anti-inflammatory properties, as well as 

being shown to participate in cell growth, differentiation and morphogenesis, cell 

migration and infections from bacteria and viruses [24]. Mammalian dermatan sulfate 

has been suggested as a potential alternative to heparin as it exhibits lower 
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anticoagulant activity than heparin and therefore its use poses a smaller risk of 

hemorrhage [25]. Dermatan sulfates with a variety of degrees and patterns of sulfation 

have been identified in the past in Ascidians, but some of these polysaccharides have 

been shown to also have anticoagulant activities [26, 27]. 

 

Chitin is an unsulfated marine derived polysaccharide, one of the most 

abundant polysaccharides on earth, and the most abundant renewable polymer in the 

oceans. It is a linear polysaccharide consisting of β-1,4-Ν-acetyl-D-glucosamine 

monosaccharide units. The main role of chitin is to participate in the construction of 

protective tissues like the exoskeleton of arthropods, e.g. shrimps and lobsters, as well 

as the cell walls of fungi and the exoskeleton of insects [28]. However, chitin can also 

participate in the formation of signalling molecules, for example the lipochitin 

oligosaccharides that are produced by rhizobia [29]. The fucosylation of the C6 of the 

reducing end N-acetylglucosamine by the NodZ chitin oligosaccharide 

fucosyltransferase has been shown to extend the range of hosts for certain bacteria 

[30]. Aberrant fucosylation of the GlcNAc moieties of glycoproteins has been 

reported in several types of cancer [31]. In general, the fucosylation of various 

glycoproteins has been observed in a multitude of different organisms, from insects to 

animals [32, 33], and has been suggested to be responsible for the regulation of 

various biological activities [34, 35].  

 

Here we present the structural analysis and pharmacological properties of two 

novel polysaccharides (VRP327A & B) isolated from the ascidian (more commonly 

named sea squirts) Ascidiella aspersa 
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2. Materials and methods 

 

2.1 Materials 

Ethylenediaminetetraacetic acid (EDTA) and trimethylsilyl propionate (TSP) were 

purchased from Goss Scientific Instruments Ltd and Aldrich respectively. The sea  

squirt Ascidiella aspersa was obtained from Loch Fyne Seafarms (Tarbert, Loch 

Fyne, Scotland), where the tunic was removed and discarded, and the remainder of the 

animal stored frozen (-20 °C). 

Fucoidan from F. vesiculosus was obtained from Glycomix Ltd, Reading, UK. 

 

2.2 Extraction of Polysaccharides from sea squirts 

 

Extracts were prepared by digestion of approximately 20 kg of homogenized tissue 

with alcalase (5 ml/kg wet weight, Novozymes) for 16 h at 60 °C, pH 8.0 with 

continuous stirring. The polysaccharides were recovered from the strained liquor by 

mixing with pre-equilibrated anion exchange resin (1:1 mixture of Lewatit 

VPOC1074 and S6328A, Caldic, UK), 200 g / kg marine tissue. The eluted product 

was then cleaned-up by further size-exclusion (Sephacryl S100, GE) and ion 

exchange (Q Sepaharose FF, GE) chromatography. The final product was dried by 

lyophilisation or spray drying.  

 

2.3 Free radical depolymerisation of polysaccharide B 

 

The polysaccharide sample was in some cases subjected to free radical 

depolymerisation based on the method of Volpi [36]. The polysaccharide (60 mg) was 
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dissolved in water (25 ml) and the solution was brought to 50 °C following addition 

of Copper (II) acetate (monohydrate) (50 mg). The pH was adjusted to a value 

between 7.5 and 8 using NaOH. The depolymerisation was then initiated by 

continuous addition (using syringe pumps) of hydrogen peroxide and sodium 

hydroxide, with flow rates adjusted to maintain pH 7 – 8. On completion of the 

depolymerisation, the reaction was stopped by adding 20 % acetic acid and Chelex. 

The final solution was cleaned-up by preparative chromatography on Q-Sepharose to 

remove the Copper, and fractionated on sephacryl S30 before lyophilisation. 

 

2.4 Molecular weight determination 

 

The molecular weight (MW) of finished products was determined by high 

performance liquid chromatography (HPLC), size exclusion chromatography (SEC) 

with refractive index (RI) and/or photodiode array detection (PDA). Samples were 

analysed using both a Biosep SEC 4K column (300 x 7.80 mm, Phenomenex), which 

has a higher molecular weight range (determined as 12 kDa to 670 kDa), and if 

necessary a YMC Diol 120 (250 x 4.6 mm, YMC Europe) column which has a lower 

molecular weight range (determined as 1,340 Da to 8,040Da). Both columns were 

calibrated with standard dextrans (Fluka) run under the same conditions. Samples 

were prepared at 1 mg/ml in the mobile phase (1 mM EDTA, 0.9 % NaCl, 50 mM 

Tris, pH 7.0) and 20 µl injections were analysed over 15 min using a Waters 2695 

HPLC system running at 1 ml/min with a column temperature of 30 °C. Data were 

collected by RI and PDA (190-400 nm).  

 

2.5 Uronic acid determination 
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The uronic acid content was determined after acid hydrolysis (6.0 M HCl at 100 °C 

for 6 h) by the modified carbazole reaction as previously described [37].  

 

2.6 Protein Content determination 

 

Protein content was determined using a Pierce 660 nm protein assay (Thermo) in 

accordance with manufacturer’s instructions. Calibration curves were constructed 

using bovine serum albumin (Sigma) standard solutions. 

 

2.7 Sulfate Assay 

 

We used a previously described technique for the determination of small amounts of 

sulfate present in GAGs [38]. To minimise the amounts required of each valuable 

sample, the method was miniaturised for use in a microplate format. Samples were 

hydrolysed by mixing a 1 mg/ml solution in water (25 µl) with an equal volume of 1 

N HCl and heating for 1-2 h at 100 °C. The hydrolysed samples were dried in a 

vacuum centrifuge at 60-65 °C. The dried hydrolysate was reconstituted in deionised 

water (250 µl). Matching, non-hydrolysed samples were run alongside the hydrolysed 

samples, at a concentration of 1 mg/ml. Sulfate content was determined by mixing 

each sample (100 µl) with ethanol (400 µl) in a microfuge tube and this mixture (125 

µl) was then added to a 96-well microplate. BaCl2 buffer (50 µl) was then added to 

each well followed by sodium rhodizonate solution (75 µl). The microplate was 

shaken for 30 sec on a plate shaker and then incubated in the dark at room 
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temperature for 10 min, followed by a further 30 sec shake and final measurement of 

colour intensity using a plate reader set to 520 nm. 

 

 

2.8 Disaccharide Analysis 

 

The disaccharide composition of the polysaccharide was determined by HPLC using 

an established [39]. Samples were digested at a final concentration of 5 mg/ml in 

digest buffer (0.5 mM Tris 0.01 mg/ml BSA 5mM NaCl pH 7.0) with 1.4 mU of 

heparinase II (Grampian Enzymes) or 2.5 mU of chondroitinase ABC (Grampian 

Enzymes), overnight at 25 °C. Samples were analysed with and without hydrolysis in 

order to identify free disaccharides which might lead to misinterpretation of the 

disaccharide composition. Heparin (Acros) and shark chondroitin sulfate (Sigma) 

were used as control enzyme substrates. The digested samples were analysed by 

HPLC strong anion exchange chromatography using a ProPac PA1 Analytical column 

(4 x 250 mm, Dionex) and a Waters 2695 separation system equipped with a PDA 

detector. Standard heparin and chondroitin disaccharides (Dextra Labs) were used for 

calibration purposes. The digested samples and controls were loaded (20 µl) and 

eluted with a salt gradient (buffer A, dH2O pH 3.5) rising to 60 % buffer B (2M NaCl 

pH 3.5) after 30 min, monitoring at 232 nm. 

 

2.9 Monosaccharide analysis 

 

The monosaccharide composition of samples was determined by methanolysis / TMS 

derivatisation followed by gas chromatography with flame ionisation detection. The 
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sample (0.1 mg) was mixed with scyllo-inositol internal standard (5 nmol) and was 

treated with 100 µl 0.5 M methanolic HCl in an oven-treated sealed glass reacti-vial 

for 4 h at 85 °C. After cooling, neat pyridine (20 µl) was added to neutralize the HCl, 

mixed, and neat acetic anhydride (20 µl) was added to re-N-acetylate any free primary 

amines. The samples were dried overnight in a vacuum centrifuge, followed by 

addition of methanol (40 µl), after which they were dried again for 2 h. Samples were 

reacted with Tri-methylsilane reagent (TMS, 40 µl, Supelco) in sealed reacti-vials for 

10 min. Samples were analysed by GC-FID: 1 µl injections were analysed on a 

Shimadzu GC-2014 machine with FID using a ZB5-ms column (30 m x 0.25 mm id x 

0.25 µm film thickness) at 300 °C. Monosaccharide standards were prepared and 

analysed in the same way: arabinose (A3131 Sigma) xylose (X-1500 Sigma), 

mannose (M6020 Sigma), fucose (F2252 Sigma), rhamnose (R3875 Sigma), galactose 

(G0750 Sigma), glucose, glucosamine (G4875), galactosamine (G0500), glucuronic 

acid (G5269), galacturonic (48280 Fluka) and sialic acid were all prepared as 100 mM 

stock solutions. Monosaccharide composition of samples was determined on the basis 

of peak areas with a response factor calculated from the peak area for each 

monosaccharide standard relative to the internal control. 

 

2.10 FTIR spectroscopy 

 

Transmission FTIR spectra were collected for selected samples and reference 

compounds (chitin, dermatan sulfate and chondroitin sulfate B, all obtained from 

Sigma) prepared in potassium bromide tablets. Transmittance data were analysed 

using Essential FTIR software. 
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2.11 Cell viability 

 HeLa cells were grown under standard tissue culture conditions (37 °C, 5% CO2), 

until a 90 % confluent monolayer was achieved.  The cells were then trypsinized, 

transferred into a tube and centrifuged (200 g) to form a pellet, and re-suspended in 

growth media and then added to a microplate (4 x 103 cells/well; 100 µL). Cells were 

incubated in the absence or presence of sea squirt polysaccharides for a period of 24 h 

at 37 °C, 5 % CO2   XTT labelling reagent and electron-coupling reagent from the cell 

proliferation kit (Cell Proliferation kit II (XTT), Roche) was added to the wells (50 

µL) for a period of 4 h at 37 °C, 5 % CO2.  Absorbance was measured at 492 nm with 

a reference wavelength of 690 nm.  The percentage viability of cells was expressed as 

the absorbance of test agents as a percentage of control values.   

 

2.12 Anticoagulant activity 

 

Characterization of the anticoagulant activity (anti-factor IIa, anti-factor Xa, activated 

partial thromboplastin time (APTT) and heparin cofactor II (HCII) assays) of the sea 

squirt samples was performed using a previously published protocol  [40].  

 

2.14 Pre-kallikrein activation assay 

 

In order to investigate the interaction of the sea squirt polysaccharides with the 

contact activation pathway, a pre-kallikrein activation assay was carried out as 

previously described [40]. Briefly, a dilution series of the samples and a dextran 

sulfate (Leuconostoc mesenteroides, Sigma) positive control were set up, and each of 

the seven concentrations was mixed with normal pooled plasma (George King Bio-
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Medical Inc.) as described elsewhere [41]. After a 5-min activation period at 37 °C, a 

chromogenic substrate specific for plasma kallikrein was added (Chromogenix 

S2302), and color development, indicating substrate cleavage, was measured after 4 

min (A405–490 nm). The change in absorbance was compared with a blank control 

related to the amount of kallikrein in the blood resulting from pre-kallikrein activation 

by test samples. Four runs were carried out, and a concentration-response curve was 

generated for each sample. 

 

2.15 Elastase release from human neutrophils 

 

Human neutrophils were isolated from whole blood isolated from the antecubital vein 

of healthy volunteers using citrate as an anticoagulant. Ethics permission was 

obtained from National Research Ethics Service – North of Scotland, for these 

experiments. Neutrophils were isolated using a previously described technique [42-

46], washed and suspended in HBSS (PAA) at a final concentration of 2.5 x 106 

cells/ml.  This cell suspension (150 µl) was added to microtubes containing HBSS (22 

µl; PAA), cytochalasin B (25 µl, 40 µg/ml; Sigma) and TNFα (25 µl 80 ng/ml; Merck) 

to give a final concentration of 5 µg/ml and 10 ng/ml, respectively for 30 min at 37 °C 

in the absence or presence of increasing concentrations of a novel marine 

polysachharide.  The formyl peptide ligand, f-met-leu-phe (fMLP)(25 µl, 100 ng/ml; 

Sigma) was then added and cells incubated for a further 45 min at 37 °C.  The micro 

tubes were then centrifuged (5000 rpm; 2000g) for 5 min to pellet the cells and the 

supernatant (25 µl) added in triplicate to a 96-well microplate for the determination of 

measurement of elastase release.  In brief, Tris buffer (150 µl, 0.1M) and neutrophil 

elastase substrate 1 (MeOSuc-Ala-Ala-Pro-Val-pNA; 20 µl, 0.5 mg/ml; Merck) were 
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added to each well and absorbance measured at 405 nm every 5 min for 1 h and V 

max calculated over 4 data points between 10 min and 1 h.  Data are expressed as 

percentage of control samples. 

2.16 Neutrophil adhesion assay 

 

Human umbilical vein endothelial cells (HUVEC) (Promocell) were cultured in 

accordance with the supplier’s instructions and grown to confluence in flat-bottomed 

96-well cell culture plates. Human neutrophils were isolated from fresh whole blood 

obtained from the antecubital vein of male healthy volunteers as described above and 

stained with Calcein AM (Invitrogen) by adding the Calcein AM (12.5 µl, 1 mg/ml 

stock) in DMSO to 3.6 x 107 cells (5 ml) to give a final concentration of 2.5 µM. The 

cells were incubated at 37 °C, 5 % CO2 for 30 min and centrifuged at 400 g for 10 

min. The resulting cell pellet was washed 2-3 times by re-suspending in HBSS (5-

10ml) followed by centrifugation. After the final wash, cells were re-suspended into 

HBSS at a density of 1 x 106 cells/ml. HUVECs were stimulated prior to addition of 

labelled neutrophils by the addition of 10 Uml-1 IL-1β and TNFα, followed by a 6 h 

incubation at 37 °C, 5 % CO2. The HUVECS were then washed with HBSS followed 

by addition of 2 x 105 labelled neutrophils to each assay well. Three test plates were 

run in parallel: unstimulated HUVECs with no test compounds, stimulated HUVECs 

with no test compounds, and stimulated HUVECs with test compounds added. The 

plates were incubated for 15 min at 370C in 5% CO2 after which non-adherent cells 

were removed by washing 2-3 times with assay buffer. The plates were then read by 

measuring fluorescence using 485/530 nm excitation/emission filter sets on a Biotek 

Synergy 2 plate reader. Data were expressed as percentage adhesion relative to 

controls. 
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2.17 Neutrophil migration assay 

HUVECs (Promocell) were cultured in accordance with the supplier’s instructions 

and grown to confluence in tissue culture flasks. The endothelial cells were released 

from the culture flasks by trypsinisation (HUVEC Detach Kit, Promocell), and re-

suspended in pre-warmed endothelial growth medium at a concentration of 3 x 105 

cells/ml.  A HUVEC suspension (100 µl) was added above the transwell filter (24-

well Thincert Plates, Greiner) of each well in the plate and media (600 µl) below the 

filter and incubated at 37 °C, 5 % (V/V) CO2, until a confluent monolayer of cells was 

formed. Neutrophils were isolated from fresh whole donor blood and stained with 

calcein AM as described above. The HUVECs were stimulated by adding to each well 

IL-1β (11 µl of 0.2 µg/ml) and TNFα (11 µl of 0.2 µg/ml) to achieve final working 

concentrations of 0.01 µg/ml IL-1β and TNFα. The wells were treated with HBSS (22 

µl) and all wells were incubated for 6 h at 37 °C, 5 % (V/V) CO2. On completion the 

transwell filters were transferred to an empty 24 well plate. The media from below the 

well was removed and rinsed out once with HBSS, before adding fresh HBSS (600 

µl) to the lower chamber. The media from above the filter was gently removed and the 

HUVECs washed carefully using HBSS (200 µl). The filters were returned to the 

original 24 well plate containing the fresh HBSS and 22 µl of 10X the test compound 

was added shortly thereafter, followed by stained neutrophils (100 µl) into the top 

chamber, bringing the volume up to 222 µl. IL-8 was used as the chemoattractant, by 

adding IL-8 (60 µl of 1 mg/ml stock) to the lower chamber, and HBSS (60 µl) to the 

lower chamber in all other groups. In a separate 24 well plate, labelled neutrophils 
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(100 µl) were added to HBSS (600 µl). The plates were then incubated for 90 min at 

37 ºC in 5 % CO2 to allow cells to migrate. In order to remove test cells with non-

specific binding from above the filter, the media and cells from above the filter were 

transferred to a 96 well solid black plate. Each filter was gently washed twice with 

HBSS (200 µl) and transferred to the black 96 well plate.  The fluorescence from this 

fraction is referred to as the non-adherent component. The filters were transferred to a 

solid black 24 well plate to be read, with this being referred to as the adherent 

component. The media in the lower chamber was transferred into a solid black 96 

well plate and the well was rinsed with HBSS, which was also then transferred to the 

96-well black plate. The fluorescent reading from this fraction is referred to as the 

migrated component.  All readings were blanked by reading wells containing HBSS 

only and the filter readings were blanked with a clean wet filter. The media from the 

well on the separate control 24 well plate containing the neutrophils was transferred to 

a solid black 96 well plate and read to provide a control for the total fluorescent value 

of labelled cells. Fluorescence was read as described above.  

 

 

 

2.18 In vivo peritoneal inflammation model 

  

Male BALBc mice (6 -8 weeks; 20-22 g) were obtained from King’s College London 

and maintained on a 12 h light/12 h dark cycle, and were allowed food and water ad 

libitum.  Animals were housed in standard caging (5 mice per cage) with appropriate 

bedding and enrichment.  All of the experiments undertaken within this study were 
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approved under the Animals [Scientific Procedures] Act (1986) and carried out in 

accordance with the ARRIVE guidelines.   

 We utilized a modification of our previously published method to assess 

neutrophil recruitment to the peritoneal cavity of mice [47] to investigate the effect of 

the sea squirt polysaccharides.  Mice were randomized to receive an intravenous 

injection of either saline control or test substance. After 15 min of vehicle or test 

substance, zymosan A (0.5 ml; Sigma Chemical) was injected intraperitoneally to 

give a total dose of 1 mg/mouse. Four hours later, mice were killed by an overdose of 

CO2 and 3ml of saline was injected into the peritoneal cavity. The peritoneal cavity of 

each mouse was then massaged for 1 min and a small incision made to the lower 

abdomen to reveal the peritoneal cavity, and lavage fluid (2ml) was collected and 

stored on ice. Total and differential cells counts were enumerated. A dose response 

relationship was undertaken to assess the in vivo potency of these molecules as anti-

inflammatory agents in vivo. 

 

2.19 Statistical Analysis 

 

Statistical analysis was performed using Graphpad prism (Graphpad, version 5).  The 

null hypothesis was tested using analysis of variance for grouped data and an 

appropriate post-hoc test was applied; the mean values were considered significantly 

different when p < 0.05.  In other instances, dose response data were fitted to a 3 

parameter logistic equation to determine potency.  Data are expressed as mean + sem. 

 

2.20 NMR analysis  
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All lyophilized samples were dissolved in 100 % D2O (540 µl) containing deuterated 

NaH2PO4+HNa2HPO4 buffer (10 mM, pH 7.2). A stock solution of EDTA and TSP 

(20 µl) was then added. The stock solution was prepared by dissolving EDTA (4 mg) 

and TSP (9 mg) in the phosphate buffer (200 µl). The pH was adjusted to 7.2 by 

adding a few drops of a concentrated solution of NaOH in D2O. All spectra were 

acquired at 50 oC on an 800 MHz Avance I (Bruker) NMR spectrometer equipped 

with a z- gradient triple-resonance TCI cryoprobe. The spectra were referenced using 

1H and 13C signals (0 ppm) of TSP.  

 

1D 13C NMR spectra were acquired using relaxation and acquisition times of 1.5 and 

0.185 s; 40960 scans were accumulated in 20 h per spectrum. FIDs were zero filled 

once and a 2 Hz exponential line broadening was applied prior to Fourier 

transformation.  2D 1H, 13C HSQC spectra were acquired using t1 and t2 acquisition 

times of 22 and 106 ms, respectively; 10 scans were acquired into each of 800 F1 

complex data points resulting in the total experimental times of 3.5 h per sample. The 

standard 2D 1H, 13C HSQC-TOCSY BRUKER pulse sequence was modified by 

appending a 1H spin-echo of overall duration of 1/1JCH (optimized for a 1JCH =150 Hz) 

after the TOCSY spin-lock and two 2D 1H, 13C HSQC-TOCSY spectra were acquired 

in an interleaved manner. The first with, and the second without, an 180o 13C pulse 

applied simultaneously with the 180o 1H pulse of the final spin-echo. This resulted in a 

change of the sign of one-bond cross peaks between the two spectra.  Addition of the 

two 2D matrices prior to processing yielded a 2D 1H, 13C HSQC-TOCSY spectrum 

with substantially reduced one-bond cross peaks. Such treatment has facilitated 

identification of weak TOCSY cross peaks. The subtraction of the two original 

spectra yielded a 1H, 13C HSQC spectrum. Each 2D 1H, 13C HSQC-TOCSY spectrum 
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was acquired using t1 and t2 acquisition times of 44 and 106 ms, respectively; 1600 

complex data points using 24 scans were collected in F1 in each experiment; the total 

duration of the experiment was 18 h. Spin-lock was achieved via DIPSI-2 mixing 

sequence applied for 25 or 60 ms. 2D 1H, 13C HSQC-NOESY spectra for the 

polysaccharides were acquired using t1 and t2 acquisition times of 21 and 106 ms; 750 

complex data points were collected in F1 using 192 scans; the total duration of the 

experiment was 66 h.  The NOESY mixing time was 25 ms. 2D 1H, 13C HMBC 

spectra for the VRP 327B oligosaccharides were acquired using t1 and t2 acquisition 

times of 14 and 367 ms; 1024 complex data points were collected in F1; the total 

duration of the experiment was 8.5 h. The experiment was optimized for the nJCH of 6 

Hz and a two-stage one-bond correlation filter was set for 1JCH of 120 (minimum) and 

160 (maximum) Hz.  

 

3. Results and discussion 

3.1 Monosaccharide analysis of the sea squirt samples. 

 

The initial sea squirt samples analysed contained a mixture of polysaccharide A and B 

(43% of A and 48% B polysaccharides, respectively which we have designated as 

VRP327A and VRP327B) (Table 1). Due to size and charge similarities between 

polysaccharide A and B it was not possible to separate them fully. Nevertheless, 

NMR was able to guide the HPLC purification process, resulting in two samples, one 

of them containing 83% polysaccharide A and 13% B, with another one containing 

20% polysaccharide A and 73% B. 

 

Table 1: Monosaccharide analysis of three sea squirt samples 
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Monosaccharide Polysaccharide A 
rich sample 

Polysaccharide B 
rich sample 

Initial sample 

Arabinose 0 0 0 
Rhamnose 0 3.45 2.58 
Fucose 4.28  25.16 18.71 
Xylose 0.8  0.84 1.3 
IdoA 40.92  9.85 24.5 
Mannose 0 0.42 1.22 
Galactose 2.54  1.67 2.72 
Glucose 0.55  0.48 0.68 
GlcA 1.61  1.28 1.91 
GalNAc 40.9  8.54 16.91 
GlcNAc 8.4  48.31 29.47 
 

Both polysaccharides A and B had molecular weights > 100 kDa. In the initial 

monosaccharide analyses we performed, it was not possible to distinguish IdoA, 

which is found in DS, from GlcA, which is found in CS, due to lack of availability of 

appropriate IdoA standards.  However, in the last 2 batches analysed, it was possible 

to distinguish between the two, and it was confirmed that IdoA was the main uronic 

acid present in polysaccharide A. The main distinguishing feature of polysaccharide B 

with A was the presence of higher levels of fucose (>20%) and N-acetyl glucosamine 

(>35%) in B. A number of samples with mixed composition were analysed, giving 

intermediate monosaccharide composition.  

3.2 FTIR spectroscopy 

The FTIR spectrum of a sample of A. aspersa polysaccharide A in a KBr tablet is 

shown in Figure 1, overlaid with spectra from chitin and dermatan sulfate, for 

comparison. The spectrum is indicative of the structural features of a GAG like 

molecule. The peaks at 1259 cm-1 and 821 cm-1 are sulfate vibrations, multiple broad 

peaks around 1054 cm-1 are sugar ring vibrations, and the peak at 1637 cm-1 may 

combine amide vibration arising from hexosamines and C=O vibration of uronic 

acids. No attempt was made to distinguish between polysaccharides A & B by FTIR, 
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but the date shown confirms the similarity between polysaccharide A and dermatan 

sulfate, and major differences from chitin. 

 

Figure 1: (A) FITR spectrum of Polysaccharide A (black) overlaid on the spectrum (red) of reference 
dermatan sulfate (Sigma), (B) Polysaccharide A (black) overlaid on the spectrum (blue) of reference 
chitin (Sigma), all in KBr tablet. Spectrum shows absorbance plotted against wavenumber with 
absorbance maxima shown in black text for polysaccharide A 
 

3.3 NMR analysis of polysaccharide A (VRP327A) 

The monosaccharide analysis suggested that polysaccharide A is a dermatan 

sulfate. Initial 1D 1H and 13C spectra showed that the sample was too complex and 

full resonance assignment was therefore obtained using 2D 1H, 13C HSQC and 2D 1H, 
13C HSQC-TOCSY spectra. The 2D 1H, 13C HSQC-NOESY spectrum helped to 

verify the assignment and also provided information about the nature of glycosidic 

bonds. The results showed that polysaccharide A consists mainly of a highly sulfated 

disaccharide repeating unit 4)IdoA(1β 3)GalNAc 4,6SO4(1β . In addition, 

GalNAc4SO3 and GalNAc6SO3 monosaccharides and a small amount of GlcA were 

identified in agreement with the monosaccharide analysis. The chemical shift 

comparison with similar polysaccharides showed a very good agreement with all 

identified disaccharide structural motifs in polysaccharide A (Table 4). 

 

 

 

 
Table 2. 1H/13C chemical shifts of polysaccharide A.  
 

 GalNAc4,6SO4 GalNAc4SO4 GalNAc6SO4 IdoA GlcA 
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H1/C1 4.69/105.22 4.62/105.23 4.72/104.29 4.89/106.00 4.51/107.0 

H2/C2 4.06/54.64 4.06/54.05 3.99/53.89 3.56/72.12 3.37/75.32 

H3/C3 4.05/ 78.18 4.10/78.41 3.82/83.13 3.96/73.96 3.59/76.82 

H4/C4 4.71/ 78.71 4.70/78.60 N.D. 4.08/84.07 3.75/84.52 

H5/C5 4.10/ 75.2 4.10/ 75.2 3.96/75.48 4.72/72.35 3.7/79.23 

H6/C6 4.22/ 70.65 3.78/63.88 4.22/70.27 -/176.6 -/176.73 

NAc 2.09/25.5 2.04/25.4 2.06/25.7 - - 

N.D. Not detected 
 

1H and 13C resonance assignment obtained for polysaccharide A are in a good 

agreement with the literature data; namely, the assignment of the GalNAc4,6SO4 was 

corroborated by the comparison with the corresponding data for the 4,6 sulfated CS[48]; 

the values for GalNAc4SO4 agreed with the mammalian DS data [49] and GalNAc6SO4 

were in agreement with the Ascidian DS data[27].  The assignment of the IdoA was 

corroborated by the comparison with the corresponding data reported for a mammalian 

DS [49], while the GlcA data agreed with the porcine DS [50] and CS oligosaccharide 

data [51]. 

 

Integration of the C2 and C6 cross peaks of GalNAc4S, GalNAc6S and 

GalNAc4,6S in 2D 1H, 13C HSQC spectrum of polysaccharides A indicates that 

GalNAc4,6S constitutes approximately 75% of the total GalNAc content, whereas 

GalNAc4S and GalNAc6S constitutes the remaining 25%, approximately at 1:1 

ratio. The integration of the anomeric carbons of GlcA and IdoA showed that IdoA 

constitutes 80% of the total uronic acid content, while GlcA is only present at the 

20%.  

 

3.4 NMR analysis of polysaccharide B (VRP327B) 

The monosaccharide analysis of polysaccharide B indicated that its main 

components are N-acetylated glucosamine and fucose (2:1 ratio, Table 1). This is in 

agreement with the NMR results. Here H2/C2 resonances at 3.71-3.77/58.69-59.03 

ppm confirmed the presence of GlcNAc, as opposed to GlcNH2 for which H2 is 
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typically observed at about 0.8 ppm lower chemical shift [52]. In addition, the 1H/13C 

signals of the N-acetyl group were present at 2.04-2.16/23.25-25.49 ppm. 

Uninterrupted sequential transfer of magnetization from H1 to H6 seen in the 2D 1H, 

13C HSQC-TOCSY spectrum of polysaccharide B is a consequence of axial-axial 

arrangement of protons in GlcNAc. The analysis of 2D 1H,13C HSQC-TOCSY 

spectrum identified four distinct sets of GlcNAc resonances (M1-M4 in Table 3), 

indicating structural heterogeneity of this polysaccharide.  

Table 2: 1H/13C chemical shifts of four different GlcNAc residues and fucose residues identified for 
polysaccharide B. GlcNAc molecules M1 and M2 are branched with C3-sulfated fucose on C4, while 
GlcNAc M3 and M4 are sulfated at C4. M2 is also sulfated at C6.  
 
 GlcNAc  (M1) GlcNAc (M2) GlcNAc (M3) GlcNAc (M4) Fucose 

H1/C1 4.54/103.32 4.62/103.04 4.76/102.42 4.72/102.67 5.04/101.34 
4.92/101.56 

H2/C2 3.72/58.97 3.74/58.71 3.77/58.69 3.71/59.03 3.93/68.71 

H3/C3 4.10/78.08 4.13/78.15 4.17/80.05 4.14/79.82 4.49/80.47 

H4/C4 3.72/76.30 3.76/76.88 4.08/78.42 4.00/78.83 4.13/73.03 

H5/C5 3.43/77.48 3.68/75.59 3.70/78.28 3.60/77.46 4.75/69.29 

H6/C6 3.91/62.70 4.33-4.55/ 
65.84 

3.76-3.96/ 
64.93 

3.75-4.03/  
64.58 

1.29/18.48 

 
 

With regard to fucose, the H6/C6 resonances at 1.29/18.48 ppm confirmed the 

presence of this residue in polysaccharide B. Unlike in GlcNAc, only one set of 

fucose cross peaks were seen for H2/C2 to H6/C6 pairs, while two sets of resolved 

H1/C1 cross peaks were attributed to fucose. Comparison of 1H and 13C chemical 

shifts of fucose in polysaccharide B with those in fucosylated chondroitin sulfate 

(fCS) [40] showed that fucose of polysaccharide B is sulfated at position C3.     

 The 2D 1H, 13C HSQC-NOESY spectrum of polysaccharide B contains intra- 

and inter-residue H1-H3 cross-peaks indicating the existence of 

→3)GlcNAc(1β→3)GlcNAc(1β→ linkages. NOE cross peaks between H4 of 
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GlcNAc and H1 of fucose identified in the 2D 1H, 13C HSQC-NOESY spectrum, as 

well as the inter residue HMBC cross peak between C4 of GlcNAc and H1 of fucose, 

showed that the M1 and M2 GlcNAc residues are branched by fucose at C4 positions. 

The M1/M2 chemical shifts differ significantly only for H5/C5 and H6/C6 pairs; in 

particular the H6/C6 atoms have higher chemical shift in M2 than in M1. This 

increase is consistent with C6 sulfation of M1/M2 GlcNAc residues.   

  The 1H and 13C chemical shifts of corresponding atoms in M3 and M4 are 

very similar and their H4/C4 chemical shifts are higher than seen for M1/M2, 

indicating that in M3/M4 these positions are sulfated. A comparison with the 

chemical shifts of β-1,3 N-acetyl-glucosamine pentasaccharide [53] supports this 

conclusion.  

   Summarizing these data, it can be concluded that polysaccharide B consists 

of a β-1,3-Ν-acetyl-D-glucosamine backbone with C4 either branched with C3-

sulfated fucose (M1/M2) or sulfated (M3/M4). In M2, the C6 position of GlcNAc is 

sulfated. It is interesting to note that the H5 of fucose has high chemical shift (4.75 

ppm) which indicates that fucose is stacked above the preceding GlcNAc residue in 

the manner seen in the fCS [40]. This is also supported by NOE cross peaks seen in 

the 2D 1H, 13C HSQC-NOESY spectrum between H5, H6 of fucose and H2 of 

GlcNAc.  It is not possible to determine how these various structural motifs are 

distributed throughout polysaccharide B, but effects of neighboring residues are 

responsible for slight variation of chemical shifts e.g. M3 vs M4 and also H1/C1 of 

fucose, which enabled the presented structural analysis. These variations are likely 

caused by a different conformation adopted by a different primary structure as 

indicated by MD simulation (data not shown). Integration of isolated H5/C5 HSQC 

cross peaks allowed us to estimate the ratio of different GlcNAc types designated 
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M1:M2:M3:M4 at 22:27:27:24 %. Given the likely errors on these integrals, it is more 

appropriate to state that each occurs with equal probability.    

 
 
3.5 In vitro biochemical characteristics of the sea squirt poly- and oligo- saccharides 

VRP327A and VRP327B 

 

The biological activity (see section 3.6 for detailed description) and chemical 

composition of the sea squirt polysaccharides A and B are summarised in Table 4. 

Since, it was impossible to prepare pure samples, these data given are for the samples 

that contain both polysaccharides, but are enriched for one of the two. As mentioned 

above, VRP327A contains 83% polysaccharide A and 13% B, whereas VRP327B 

contains 20% polysaccharide A and 73% B. Both preparations were resistant to 

heparinase and chondroitinase ABC, likely because of the high sulfation of the DS 

contained in the sea squirt samples and non-GAG branched nature of polysaccharide 

B. 

 

 

 

Table 3: Summary of the in vitro biological activity, and characteristics of a range of novel marine 
GAG-like polysaccharides. 
 
ID Dominant 

(80%) 
polysaccharide 

XTT 
% 

APTT 
IU/ml 

NE 
%  

MW  
(kDa) 
 

Fucose 
molar 
% 

GlcNA
c molar 
% 

Gal 
NAc 
molar 
% 

Sulf
ate 
% 

N 

VRP327
A 

 
A  

 
100 
 

 
6.22 
 

 
37.7 
 

 
170 
 

 
3.1 

 
15.7 

 
37.3 

 
19.2 

 
8 
 

VRP327
B 

B 91.4 4.2 36.9 115 21.9 45.8 14.1 
 

17.5 2 

VRP327 
mixed 

Mixed 90.1 4.4 45.9 86.9 11.9 25.8 
 

23.0 
 

16.7  4 

VRP327A & B defined on the basis of monosaccharide composition, as confirmed by NMR. 
Data expressed as mean values from multiple different batches of polysaccharide (XTT, % 
viability relative to control; Neutrophil Elastase (NE) % activity compared with control). 
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Monosaccharide molar composition expressed as % of total monosaccharides. APTT 
represents mean values in IU/ml. N = number of samples 
 

A. aspersa polysaccharides A & B have no appreciable cellular toxicity as cells 

treated with these polysaccharides demonstrated a viability of >90 %, using XTT as a 

metabolic viability indicator. The polysaccharides were shown to have < 10 IU/mg 

anticoagulant activity, as determined by the activated partial thromboplastin time 

(APTT) assay using human plasma (Table 4). Separate analysis (data not shown) of 

one sample of polysaccharide A identified low (<1 IU / mg) antithrombin mediated 

anti-Xa and anti-IIa activity, and low heparin cofactor II inhibition of thrombin, which 

were all comparable to mammalian DS. 

 

Two polysaccharide samples were depolymerised using Fenton type free radical 

depolymerisation. The first sample was predominantly polysaccharide A (71% 

polysaccharide A, 20 % polysaccharide B). The second sample was mixed, containing 

almost equal percentages of polysaccharide A (43%) and polysaccharide B (48%). 

Oligosaccharides of various sizes were generated and tested for various biological 

activities in vitro. The degree of polymerisation (DP) of the fractions were nominally 

assigned based on the molecular weights of heparin oligosaccharide standards. The 

neutrophil elastase inhibition activity showed some correlation with chain length 

(Table 5). Cytotoxicity and anticoagulant activity of all depolymerised samples did 

not differ from that of the native polysaccharides (Table 5). The structure of the 

oligosaccharides produced from the mixed sample were analysed by NMR and it was 

found that they contained stronger signals attributable to a polysaccharide B like 

structure, rather than polysaccharide A structures (Figure 2). This indicated that the 

DS component of the sea squirt samples was preferentially depolymerised by the free 
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radical depolymerisation, probably through destruction of the IdoA monosaccharides 

and the opening of the GalNAc rings [54]. 

 

 

 

 

Table 4: The effect of various oligosaccharides on inhibition of neutrophil elastase expressed as % 
activity of each oligosaccharide compared with control (polysaccharide). 
 
Nominal DP Polysaccharide 

A NE %  
XTT 
% 

APTT 
IU/ml 

Mixed 
polysaccharide 
NE % 

XTT 
% 

APTT 
IU/ml 

Polysaccharide 38.95 96 ND 55.56 105 4.34 
Dp2 NA NA NA 129.58 ND ND 
Dp4 68.1 121 1.56 100.65 ND ND 
Dp8 66.5 130 1.95 72.71 ND ND 
Dp12 57.6 117 2.56 41.67 ND ND 
Dp16 48.7 103 2.83 62.42 ND ND 
Dp20 57.3 100 2.83 NA NA NA 
ND – Not determined. NA – Not applicable. DP – degree of polymerisation.  
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Figure 2:  Superposition of the H2/C2 region of the 2D 1H, 13C HSQC spectra of the mixture of 
polysaccharides A and B (blue), polysaccharide B rich sample (red) and the oligosaccharides 
derived from polysaccharides A and B mixture (green). The signals in the top left corner belong 
to GalNAc of polysaccharide A, whereas the signals in the bottom right corner belong to GlcNAc 
of polysaccharide B. The red and green cross peaks have been moved by 0.05 and 0.1 ppm to the 
right, respectively,  in order for their intensity to be clearly visible.  
 
 

3.6 In vitro anti-inflammatory activity of sea squirt polysaccharides and 

oligosaccharides. 

 

The anti-inflammatory activity of the sea squirt polysaccharides was demonstrated by 

measuring their effect on the release of elastase from human neutrophils and adhesion 

of human neutrophils to human umbilical cord endothelial cells (Figure 3). The 

inhibition of neutrophil elastase release is summarised in Table 4 above. Human 

neutrophils treated with polysaccharide A (VRP327A), polysaccharide B (VRP327B) 

or fucoidan (a reference polysaccharide isolated from Fucus vesiculosis) inhibited 

elastase release by 60-80 % (Figure 3a).  Transendothelial migration of neutrophils 
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was inhibited by up to 30%, which did not reach significance (Figure 3c). Similarly, 

many of the VRP327 oligosaccharides also inhibited neutrophil elastase release 

(Figure3c). However, there was no significant effect on neutrophil adhesion with any 

of the VRP327 oligosaccharides (Figure 3b). 

 

Figure 3: A,D) Percentage of elastase release from human neutrophils by the sea squirt 
polysaccharides and oligosaccharides (100 µg/ml).  Each column represents mean + SEM from N 
(left to right; 19 ,8, 4,  46, 19 respectively) separate donors performed in duplicate.  * P < 0.05 
compared with polyglutamic acid control. B) The effect of the heparin on human neutrophil 
adhesion and C) VRP327 on transmigration of human neutrophils in vitro. The results indicate 
that there is no significant reduction of adhesion of human neutrophils to human umbilical cord 
vein endothelial cells.  In contrast, migration of human neutrophils through endothelial cells 
appeared to be inhibited.  
 

 

3.4 In vivo anti-inflammatory activity of sea squirt polysaccharide A and 

oligosaccharides. 

The inflammatory stimulus, zymosan caused a neutrophil rich infiltrate 4 h after 

injection into the peritoneal cavity, with neutrophils representing 75 % of the total cell 
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population.  The administration of the polysaccharide A VRP327A by the intravenous 

route, 15 min prior to the intraperitoneal injection of zymosan, dose-dependently 

inhibited this response.  Animals exposed to VRP327A (0.1-10 mg/kg) produced a 

dose-dependent inhibition of neutrophil recruitment to the peritoneal cavity in 

response to zymosan (Figure 4A).   Fucoidan derived from F. vesiculosis (Figure 4B) 

at doses of 1 -100 mg/kg was used as a positive control and also caused a dose-

dependent inhibition of neutrophil recruitment into the peritoneal cavity after 

challenge with zymosan.  VRP327 oligosaccharides were further evaluated for their in 

vivo anti-inflammatory activity.  Dp4, dp12 and dp16 demonstrated anti-inflammatory 

activity, whilst dp8 and dp20 were less effective against neutrophil recruitment 

(Figure 4 C,D).   
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Figure 4: Inhibition of neutrophil recruitment to t he peritoneal cavity.  Animals were pretreated 
intravenously with saline (zymosan only treated group), VRP327 (A) and a fucosis versiculosis 
fucoidan control (B) 15 min prior to zymosan injection.  Each column represents the mean cell 
number from 3-5 animals and vertical lines represent standard error of the mean.  * P < 0.01 
versus saline.  ^ P < 0.05 cf zymosan only (Dunnett’s post hoc test). C) Inhibitory cumulative dose 
response curves for dp4 (closed circles), dp8 (open circles) and dp16 (open diamonds) and D) 
dp12 (open circles) and dp20 (closed circles) (B) against neutrophil recruitment to the peritoneal 
cavity induced by zymosan.  The dose of VRP327x series was expressed as micromole/kg.  The 
dependent variable (% Inhibition = 100 - % control) was calculated by normalizing neutrophil 
cell number in drug treated animals by the mean neutrophil cell number in untreated animals. 
Each point is the mean + standard error of the mean of 3 animals. 
 
 
 
4. Conclusions 

 

A mixture of sulfated polysaccharides referred to as VRP327 was isolated 

from the gut of the tunicate A. aspersa. The two major polysaccharides (A and B; 

VRP327A and VRP327B) were fully characterised structurally by NMR. . The first of 
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these polysaccharides, polysaccharide A (VRP327A), is a highly sulfated dermatan 

sulfate, which contains unsulfated uronic acid and GalNAc of different sulfation 

patterns, with GalNAc 4,6S being the main component. The second polysaccharide 

(VRP327B) is a fucosylated sulfated molecule, containing a repeating 

monosaccharide unit of β-1,3-Ν-acetyl-D-glucosamine, approximately half of which 

are fucosylated on C4. These polysaccharides are interesting because they show anti-

inflammatory properties, but importantly lack significant anticoagulant activity and 

direct cytotoxicity towards mammalian cells. 

Both were shown to have anti-inflammatory activity in vitro and in vivo, while 

their anti-coagulant activity was low. Fractionation of VRP327 yielded 

oligosaccharides, which exhibited varying degrees of anti-inflammatory activity in 

vivo in the zymosan-induced neutrophilia assay.  In particular dp4, dp12 and dp16 

resulted in a dose dependent reduction in zymosan-induced neutrophilia in the 

peritoneal cavity.  The fact that these oligosaccharides lack significant anticoagulant 

activities raises the possibility of using them as low molecular weight templates in the 

search for novel anti-inflammatory drugs. 

 

 Though HPLC separation was unable to distinguish the two polysaccharide 

components of VRP327, the NMR signals of the two polysaccharides are distinct. 

Polysaccharide A is a dermatan sulfate with an unusual sulfation pattern and contains 

disulfated GalNAc 4,6 SO3, which has only been found in traces in previous Ascidian 

preparations (<1%) [27]. However, even more unique is the second polysaccharide 

isolated from A. Aspersa, which has been identified as a fucosylated chitin-like 

molecule. Whereas chitin is formed by a 1β → 4 linkage between its GlcNAc 

monomers, the GlcNAc polymer we isolated is comprised by GlcNAc linked with 1β 
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→ 3 linkage. It is also the first time that a fucosylated chitin-like polysaccharide is 

reported; previously fucosylated chitins identified being exclusively oligosaccharide 

moieties of glycoproteins. Finally both GlcNAc and fucose of polysaccharide B are 

sulfated and this polysaccharide, like other sulfated chitins [55], exhibits some 

anticoagulant activity. 

 

This observation is important because it further suggests that the anti-inflammatory 

activities of polysaccharides are independent of anticoagulant activities, supporting 

other work with heparin like molecules [11]. Previous studies have demonstrated 

inhibition of neutrophil elastase by a wide range of GAG’s [45, 56] and sulfated 

polysaccharide from seaweeds, such as fucoidan [6]. 

 

 Our initial assumption was that sulfation is required for the anti-inflammatory 

activity of the polysaccharides as has been described for other studies investigating 

the anti-proliferative and anti-secretory activity of GAGs [57]. However, further study 

of the extracts is required to fully characterise the anti-inflammatory properties of 

these novel molecules we have identified and in particular the role of sulfation. 

Nonetheless, this study clearly demonstrates that anti-inflammatory activity is present 

in polysaccharides with a very wide molecular weight range, including some of the 

small oligosaccharide derivatives of VRP327. Our results further support the concept 

that oligosaccharides from marine sources could provide a useful source of novel anti-

inflammatory molecules lacking anticoagulant activity for the treatment of diseases 

such as asthma and COPD. 
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