2,714 research outputs found

    A Snapshot of J. L. Synge

    Full text link
    A brief description is given of the life and influence on relativity theory of Professor J. L. Synge accompanied by some technical examples to illustrate his style of work

    How couples with dementia experience healthcare, lifestyle, and everyday decision-making

    Full text link
    Copyright © International Psychogeriatric Association 2018. Objectives: Recent research has demonstrated the challenges to self-identity associated with dementia, and the importance of maintaining involvement in decision-making while adjusting to changes in role and lifestyle. This study aimed to understand the lived experiences of couples living with dementia, with respect to healthcare, lifestyle, and everyday decision-making.Design: Semi-structured qualitative interviews using Interpretative Phenomenological Analysis as the methodological approach.Setting: Community and residential care settings in Australia.Participants: Twenty eight participants who self-identified as being in a close and continuing relationship (N = 13 people with dementia, N = 15 spouse partners). Nine couples were interviewed together.Results: Participants described a spectrum of decision-making approaches (independent, joint, supported, and substituted), with these approaches often intertwining in everyday life. Couples' approaches to decision-making were influenced by decisional, individual, relational, and external factors. The overarching themes of knowing and being known, maintaining and re-defining couplehood and relational decision-making, are used to interpret these experiences. The spousal relationship provided an important context for decision-making, with couples expressing a history and ongoing preference for joint decision-making, as an integral part of their experience of couplehood. However, the progressive impairments associated with dementia presented challenges to maintaining joint decision-making and mutuality in the relationship.Conclusions: This study illustrates relational perspectives on decision-making in couples with dementia. Post-diagnostic support, education resources, proactive dyadic interventions, and assistance for spouse care partners may facilitate more productive attempts at joint decision-making by couples living with dementia

    Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications

    Get PDF
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways

    Novel lines of Pax6-/- embryonic stem cells exhibit reduced neurogenic capacity without loss of viability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryonic stem (ES) cells can differentiate into all cell types and have been used extensively to study factors affecting neuronal differentiation. ES cells containing mutations in known genes have the potential to provide useful in vitro models for the study of gene function during neuronal differentiation. Recently, mouse ES cell lines lacking the neurogenic transcription factor Pax6 were reported; neurons derived from these <it>Pax6</it><sup>-/- </sup>ES cells died rapidly after neuronal differentiation in vitro.</p> <p>Results</p> <p>Here we report the derivation of new lines of <it>Pax6</it><sup>-/- </sup>ES cells and the assessment of their ability to survive and differentiate both in vitro and in vivo. Neurons derived from our new <it>Pax6</it><sup>-/- </sup>lines were viable and continued to elaborate processes in culture under conditions that resulted in the death of neurons derived from previously reported <it>Pax6</it><sup>-/- </sup>ES cell lines. The new lines of <it>Pax6</it><sup>-/-</sup>ES cells showed reduced neurogenic potential, mimicking the effects of loss of Pax6 in vivo. We used our new lines to generate <it>Pax6</it><sup>-/- </sup>↔ <it>Pax6</it><sup>+/+ </sup>chimeras in which the mutant cells survived and displayed the same phenotypes as <it>Pax6</it><sup>-/- </sup>cells in <it>Pax6</it><sup>-/- </sup>↔ <it>Pax6</it><sup>+/+ </sup>chimeras made by embryo aggregation.</p> <p>Conclusions</p> <p>We suggest that loss of Pax6 from ES cells reduces their neurogenic capacity but does not necessarily result in the death of derived neurons. We offer these new lines as additional tools for those interested in the generation of chimeras and the analysis of in vitro ES cell models of Pax6 function during neuronal differentiation, embryonic and postnatal development.</p

    Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's Disease

    Get PDF
    Polygenic risk scores (PRSs) have been used to combine the effects of variants with small effects identified by genome-wide association studies. We explore the potential for using pathway-specific PRSs as predictors of early changes in Alzheimer’s disease (AD)-related biomarkers and cognitive function. Participants were from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of adults who were cognitively asymptomatic at enrollment and enriched for a parental history of AD. Using genes associated with AD in the International Genomics of Alzheimer’s Project’s meta-analysis, we identified clusters of genes that grouped into pathways involved in amyloid-β (Aβ) deposition and neurodegeneration: Aβ clearance, cholesterol metabolism, and immune response. Weighted pathway-specific and overall PRSs were developed and compared to APOE alone. Mixed models were used to assess whether each PRS was associated with cognition in 1,200 individuals, cerebral Aβ deposition measured using amyloid ligand (Pittsburgh compound B) positron emission imaging in 168 individuals, and cerebrospinal fluid Aβ deposition, neurodegeneration, and tau pathology in 111 individuals, with replication performed in an independent sample. We found that PRSs including APOE appeared to be driven by the inclusion of APOE, suggesting that the pathway-specific PRSs used here were not more predictive than an overall PRS or APOE alone. However, pathway-specific PRSs could prove to be useful as more knowledge is gained on the genetic variants involved in specific biological pathways of AD

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms

    Full text link
    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.Comment: 3 figures, 1 tabl
    corecore