83 research outputs found
A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.
Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1flox mice and crossed them with Gnrhcre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1flox/flox:GnRHcre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1flox/flox:GnRHcre:RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we show that VAX1 is a direct regulator of Gnrh1 transcription by binding key ATTA sites within the Gnrh1 promoter. This study identifies VAX1 as a key transcription factor regulating GnRH expression and establishes VAX1 as a novel candidate gene implicated in heritable infertility
Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines.
BackgroundProper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines.MethodsWe evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LβT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes.ResultsWe found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LβT2 cells. Lhb begins to open in LβT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LβT2, and Lhb in LβT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LβT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter.ConclusionOur data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications
Long-lasting impairment of mGluR5-activated intracellular pathways in the striatum after withdrawal of cocaine self-administration
Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors (mGluR1/5), with allosteric modulators showing particular promise. Methods: We evaluated the capacity of mGluR1/5 receptors to induce functional responses in ex vivo striatal slices from rats with 1) acute cocaine self-administration (CSA), 2) chronic CSA and 3) 60 days CSA withdrawal by westernblot and extracellular recordings of synaptic transmission. Results: We found that striatal mGluR5 are the principal mediator of the mGluR1/5 agonist DHPG-induced CREB phosphorylation. Both acute and chronic CSA blunted mGluR1/5 effects on CREB phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect which was maintained 60 days after chronic CSA withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic CSA blunted mGluR1/5 stimulation of ERK1/2 and CREB. Interestingly, the mGluR5 antagonist/inverse-agonist, MPEP, lead to a specific increase in CREB phosphorylation after chronic CSA specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged CSA, through withdrawal, leads to a blunting of mGluR1/5 responses in the striatum. In addition, specifically in the accumbens, mGluR5 signaling to CREB shifts from an agonist-induced to an antagonist-induced CREB phosphorylation
Cellular distribution of the histamine H3 receptor in the basal ganglia : functional modulation of dopamine and glutamate neurotransmission
This is the author's version of a work that was accepted for publication in Basal ganglia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Vol. 3 NĂşm. 2 (Jul. 2013)Altres ajuts: Red_de_Trastornos_Adictivos/RD06/0001/0015Histamine H3 receptors (H3R) are widely expressed in the brain where they participate in sleep-wake cycle and cognition among other functions. Despite their high expression in some regions of the basal ganglia, their functional role in this forebrain neural network remains unclear. The present findings provide in situ hybridization and immunohistochemical evidence for H3R expression in several neuronal populations of the rat basal ganglia but not in astrocytes (glial fibrillary acidic protein immunoreactive cells). We demonstrate the presence of H3R mRNA and protein in dopaminergic neurons (tyrosine hydroxylase positive) of the ventral tegmental area and substantia nigra. In the dorsal and ventral (nucleus accumbens) striatal complex we show H3R immunoreactivity in cholinergic (choline acetyltransferase immunoreactive) and GABAergic neurons (substance P, proenkephalin or dopamine D1 receptor positive) as well as in corticostriatal terminals (VGLUT1-immunoreactive). Double-labelling experiments in the medial prefrontal cortex show that H3R is expressed in D1R-positive interneurons and VGLUT1-positive corticostriatal output neurons. Our functional experiments confirm that H3R ligands modulate dopamine synthesis and the probability of glutamate release in the striatum from cortico-striatal afferents. The presence of H3R in such different neuronal populations and its involvement in the control of striatal dopaminergic and glutamatergic transmission ascribes a complex role to H3R in the function of the basal ganglia neural network
Consistency and interoperability in a national term bank
In this paper we will describe some problems related to the defini-tion of a set of data categories as well as to the import and merging of data from various resources. First, we illustrate how organizing a taxonomy of data cate-gories is facilitated by using the principles for creating a terminological ontolo-gy (or concept system). Next, we discuss how multiple terminological entries referring to the same concept can be identified with the purpose of merging them
Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease:A Randomized Controlled Trial
Background: Studies of physical exercise in patients with Alzheimer’s disease (AD) are few and results have been inconsistent. Objective: To assess the effects of a moderate-to-high intensity aerobic exercise program in patients with mild AD. Methods: In a randomized controlled trial, we recruited 200 patients with mild AD to a supervised exercise group (60-min sessions three times a week for 16 weeks) or to a control group. Primary outcome was changed from baseline in cognitive performance estimated by Symbol Digit Modalities Test (SDMT) in the intention-to-treat (ITT) group. Secondary outcomes included changes in quality of life, ability to perform activities of daily living, and in neuropsychiatric and depressive symptoms. Results: The ITT analysis showed no significant differences between intervention and control groups in change from baseline of SDMT, other cognitive tests, quality of life, or activities of daily living. The change from baseline in Neuropsychiatric Inventory differed significantly in favor of the intervention group (mean: –3.5, 95% confidence interval (CI) –5.8 to –1.3, p = 0.002). In subjects who adhered to the protocol, we found a significant effect on change from baseline in SDMT as compared with the control group (mean: 4.2, 95% CI 0.5 to 7.9, p = 0.028), suggesting a dose-response relationship between exercise and cognition. Conclusions: This is the first randomized controlled trial with supervised moderate-to-high intensity exercise in patients with mild AD. Exercise reduced neuropsychiatric symptoms in patients with mild AD, with possible additional benefits of preserved cognition in a subgroup of patients exercising with high attendance and intensity.</jats:p
Generic pregabalin : current situation and implications for health authorities, generics and biosimilars manufacturers in the future
The manufacturer of pregabalin has a second use patent covering prescribing for neuropathic pain: its principal indication. The manufacturer has threatened legal action in the UK if generic pregabalin rather than Lyrica is prescribed for this indication. No problems exist for practitioners who prescribe pregabalin for epilepsy or generalized anxiety disorder. This has serious implications for health authorities. In Germany, however, generics could be legally prescribed for any approved indication once one indication loses its patent. We aim to establish the current situation with pregabalin among principally European countries. Personnel from 33 regional and national health authorities mainly from Europe, and nine from universities across Europe working as advisers to health authorities or with insight into their activities, were surveyed regarding four specific questions via email to shed light on the current situation with Lyrica and pregabalin in their country. The information collated from each country was subsequently checked for accuracy with each co-author by email and face-to-face contact and collated into five tables. The scenarios ranged from extending the patent life of Lyrica (e.g. France), endorsing the prescribing of Lyrica for neuropathic pain (e.g. Catalonia and South Korea), and current prescribing of pregabablin for all indications (e.g. Serbia and Germany). Little activity has taken place in European countries in which generic pregabalin is not yet reimbursed. The availability of generic pregabalin has prompted a number of different activities to be undertaken among the 33 countries and regions surveyed. The situation in Serbia and the historic situation in Germany provide examples of ways to maximize savings once a product loses its patent for at least one indication
Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In the present study, using Resonance Energy Transfer (RET) techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1 and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1 and D2) was found to include two evolutionary conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (mitogen-activated protein kinase, MAPK, signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultime
- …