28 research outputs found
Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder leading to end-stage renal failure in humans. In the PKD/Mhm(cy/+) rat model of ADPKD, the point mutation R823W in the sterile alpha motif (SAM) domain of the protein ANKS6 is responsible for disease. SAM domains are known protein-protein interaction domains, capable of binding each other to form polymers and heterodimers. Despite its physiological importance, little is known about the function of ANKS6 and how the R823W point mutation leads to PKD. Recent work has revealed that ANKS6 interacts with a related protein called ANKS3. Both ANKS6 and ANKS3 have a similar domain structure, with ankyrin repeats at the N-terminus and a SAM domain at the C-terminus. Results: The SAM domain of ANKS3 is identified as a direct binding partner of the ANKS6 SAM domain. We find that ANKS3-SAM polymerizes and ANKS6-SAM can bind to one end of the polymer. We present crystal structures of both the ANKS3-SAM polymer and the ANKS3-SAM/ANKS6-SAM complex, revealing the molecular details of their association. We also learn how the R823W mutation disrupts ANKS6 function by dramatically destabilizing the SAM domain such that the interaction with ANKS3-SAM is lost. Conclusions: ANKS3 is a direct interacting partner of ANKS6. By structurally and biochemically characterizing the interaction between the ANKS3 and ANKS6 SAM domains, our work provides a basis for future investigation of how the interaction between these proteins mediates kidney function
An experimental investigation of evolutionary dynamics in the Rock-Paper-Scissors game
Game theory describes social behaviors in humans and other biological organisms. By far, the most powerful tool available to game theorists is the concept of a Nash Equilibrium (NE), which is motivated by perfect rationality. NE specifies a strategy for everyone, such that no one would benefit by deviating unilaterally from his/her strategy. Another powerful tool available to game theorists are evolutionary dynamics (ED). Motivated by evolutionary and learning processes, ED specify changes in strategies over time in a population, such that more successful strategies typically become more frequent. A simple game that illustrates interesting ED is the generalized Rock-Paper-Scissors (RPS) game. The RPS game extends the children's game to situations where winning or losing can matter more or less relative to tying. Here we investigate experimentally three RPS games, where the NE is always to randomize with equal probability, but the evolutionary stability of this strategy changes. Consistent with the prediction of ED we find that aggregate behavior is far away from NE when it is evolutionarily unstable. Our findings add to the growing literature that demonstrates the predictive validity of ED in large-scale incentivized laboratory experiments with human subjects
Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations
Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen
typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can
however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We
evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated
by Illumina sequencers enabling real-time
data analysis for multiple samples part of the same ongoing sequencing run,
as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality
systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence
factor and antimicrobial resistance databases, SNP-based
antimicrobial resistance detection, serotype determination,
and core genome multilocus sequence typing) for three bacterial pathogens (Mycobacterium tuberculosis, Neisseria meningitidis,
and Shiga-toxin
producing Escherichia coli) was performed by evaluating performance in function of the two most critical
sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results
could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-
results
time by more than half.
This study aids in reducing the turn-around
time of WGS analysis by facilitating a faster response in time-critical
scenarios and
provides recommendations for time-optimized
WGS with respect to required read length and coverage to achieve a minimum
level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness
of
routine surveillance sequencing when response time is not essential.The Belgian Federal Public Service of Health, Food Chain Safety and Environment and Sciensano RP-PJ - Belgium.https://www.microbiologyresearch.org/content/journal/mgenam2022Genetic
Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity
Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio
Incident type 2 diabetes attributable to suboptimal diet in 184 countries
The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio
An experimental investigation of evolutionary dynamics in the rock-paper-scissors game
Game theory describes social behaviors in humans and other biological organisms. By far, the most powerful tool available to game theorists is the concept of a Nash Equilibrium (NE), which is motivated by perfect rationality. NE specifies a strategy for everyone, such that no one would benefit by deviating unilaterally from his/her strategy. Another powerful tool available to game theorists are evolutionary dynamics (ED). Motivated by evolutionary and learning processes, ED specify changes in strategies over time in a population, such that more successful strategies typically become more frequent. A simple game that illustrates interesting ED is the generalized Rock-Paper-Scissors (RPS) game. The RPS game extends the children's game to situations where winning or losing can matter more or less relative to tying. Here we investigate experimentally three RPS games, where the NE is always to randomize with equal probability, but the evolutionary stability of this strategy changes. Consistent with the prediction of ED we find that aggregate behavior is far away from NE when it is evolutionarily unstable. Our findings add to the growing literature that demonstrates the predictive validity of ED in large-scale incentivized laboratory experiments with human subjects
Targeting the 16S rRNA gene for bacterial identification in complex mixed samples : comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies
Rapid, accurate bacterial identification in biological samples is an important task for microbiology laboratories, for which 16S rRNA gene Sanger sequencing of cultured isolates is frequently used. In contrast, next-generation sequencing does not require intermediate culturing steps and can be directly applied on communities, but its performance has not been extensively evaluated. We present a comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies (ONT)) generation sequencing technologies for 16S targeted genomics using a well-characterized reference sample. Different 16S gene regions were amplified and sequenced using the Illumina MiSeq, and analyzed with Mothur. Correct classification was variable, depending on the region amplified. Using a majority vote over all regions, most false positives could be eliminated at the genus level but not the species level. Alternatively, the entire 16S gene was amplified and sequenced using the ONT MinION, and analyzed with Mothur, EPI2ME, and GraphMap. Although >99% of reads were correctly classified at the genus level, up to approximate to 40% were misclassified at the species level. Both technologies, therefore, allow reliable identification of bacterial genera, but can potentially misguide identification of bacterial species, and constitute viable alternatives to Sanger sequencing for rapid analysis of mixed samples without requiring any culturing steps
A shotgun metagenomics approach to detect and characterize unauthorized genetically modified microorganisms in microbial fermentation products
The presence of a genetically modified microorganism (GMM) or its DNA, often harboring antimicrobial resistance (AMR) genes, in microbial fermentation products on the market is prohibited by European regulations. GMMs are currently screened for through qPCR assays targeting AMR genes and vectors, and then confirmed by targeting known specific GM constructs/events. However, when the GMM was not previously characterized and an isolate cannot be obtained, its presence cannot be proven. We present a metagenomics approach capable of delivering the proof of presence of a GMM in a microbial fermentation product, with characterization based on the detection of AMR genes and vectors, species and unnatural associations in the GMM genome. In our proof-of-concept study, this approach was performed on a case with a previously isolated and sequenced GMM, an unresolved case for which no isolate was obtained, and a non-GMM-contaminated sample, all representative for the possible scenarios to occur in routine setting. Both short and long read sequencing were used. This workflow paves the way for a strategy to detect and characterize unknown GMMs by enforcement laboratories
Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+)rat
Autosomal dominant polycystic kidney disease (PKD) is the most common genetic disease that leads to kidney failure in humans. In addition to the known causative genes PKD1 and PKD2, there are mutations that result in cystic changes in the kidney, such as nephronophthisis, autosomal recessive polycystic kidney disease, or medullary cystic kidney disease. Recent efforts to improve the understanding of renal cystogenesis have been greatly enhanced by studies in rodent models of PKD. Genetic studies in the (cy/+) rat showed that PKD spontaneously develops as a consequence of a mutation in a gene different from the rat orthologs of PKD1 and PKD2 or other genes that are known to be involved in human cystic kidney diseases. This article reports the positional cloning and mutation analysis of the rat PKD gene, which revealed a C to T transition that replaces an arginine by a tryptophan at amino acid 823 in the protein sequence. It was determined that Pkdr1 is specifically expressed in renal proximal tubules and encodes a novel protein, SamCystin, that contains ankyrin repeats and a sterile {alpha} motif. The characterization of this protein, which does not share structural homologies with known polycystins, may give new insights into the pathophysiology of renal cyst development in patients