603 research outputs found

    TNF-α increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes

    Get PDF
    Inflammatory mediators have been reported to promote malignant cell growth, invasion and metastatic potential. More specifically, we have recently reported that tumour necrosis factor alpha (TNF-a) increases melanoma cell attachment to extracellular matrix (ECM) substrates and invasion through fibronectin. In this study, we extend these investigations asking specifically whether the TNF-a effect on cell invasion and migration involves activation of proteolytic enzymes. We examined the effect of TNF-a on melanoma expression/activation of type IV gelatinases matrix metalloproteinases 2 and 9 (MMPs -2 and -9) and general proteolytic enzymes. Stimulation with TNF-a significantly increased both melanoma cell migration at 24 h ( þ 21%) and invasion through fibronectin ( þ 35%) but did not upregulate/activate the expression of latent MMP-2 constitutively produced by these cells and did not upregulate their general protease activity. However, the increased cell migration and invasion through fibronectin observed following stimulation with TNF-a were inhibited by the general protease inhibitor a2 macroglobulin. These findings suggest that the promigratory and proinvasive effect of TNF-a on this melanoma cell line may be mediated to some extent by induction of localised cell membrane-bound degradative enzyme activity, which is not readily detected in biochemical assays

    Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study

    Get PDF
    Thin-walled cardiac tissue samples superfused with oxygenated solutions are widely used in experimental studies. However, due to decreased oxygen supply and insufficient wash out of waste products in the inner layers of such preparations, electrophysiological functions could be compromised. Although the cascade of events triggered by cutting off perfusion is well known, it remains unclear as to which degree electrophysiological function in viable surface layers is affected by pathological processes occurring in adjacent tissue. Using a 3D numerical bidomain model, we aim to quantify the impact of superfusion-induced heterogeneities occurring in the depth of the tissue on impulse propagation in superficial layers. Simulations demonstrated that both the pattern of activation as well as the distribution of extracellular potentials close to the surface remain essentially unchanged. This was true also for the electrophysiological properties of cells in the surface layer, where most relevant depolarization parameters varied by less than 5.5 %. The main observed effect on the surface was related to action potential duration that shortened noticeably by 53 % as hypoxia deteriorated. Despite the known limitations of such experimental methods, we conclude that superfusion is adequate for studying impulse propagation and depolarization whereas repolarization studies should consider the influence of pathological processes taking place at the core of tissue sample

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Probing Cellular Dynamics with a Chemical Signal Generator

    Get PDF
    Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic “chemical signal generator,” a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    Uncertainty analysis using Bayesian Model Averaging: a case study of input variables to energy models and inference to associated uncertainties of energy scenarios

    Get PDF
    Background Energy models are used to illustrate, calculate and evaluate energy futures under given assumptions. The results of energy models are energy scenarios representing uncertain energy futures. Methods The discussed approach for uncertainty quantification and evaluation is based on Bayesian Model Averaging for input variables to quantitative energy models. If the premise is accepted that the energy model results cannot be less uncertain than the input to energy models, the proposed approach provides a lower bound of associated uncertainty. The evaluation of model-based energy scenario uncertainty in terms of input variable uncertainty departing from a probabilistic assessment is discussed. Results The result is an explicit uncertainty quantification for input variables of energy models based on well-established measure and probability theory. The quantification of uncertainty helps assessing the predictive potential of energy scenarios used and allows an evaluation of possible consequences as promoted by energy scenarios in a highly uncertain economic, environmental, political and social target system. Conclusions If societal decisions are vested in computed model results, it is meaningful to accompany these with an uncertainty assessment. Bayesian Model Averaging (BMA) for input variables of energy models could add to the currently limited tools for uncertainty assessment of model-based energy scenarios

    Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer

    Get PDF
    BACKGROUND: Recently, instruments for the measurement of wavefront aberration in the living human eye have been widely available for clinical applications. Despite the extensive background experience on wavefront sensing for research purposes, the information derived from such instrumentation in a clinical setting should not be considered a priori precise. We report on the variability of such an instrument at two different pupil sizes. METHODS: A clinical aberrometer (COAS Wavefront Scienses, Ltd) based on the Shack-Hartmann principle was employed in this study. Fifty consecutive measurements were perfomed on each right eye of four subjects. We compared the variance of individual Zernike expansion coefficients as determined by the aberrometer with the variance of coefficients calculated using a mathematical method for scaling the expansion coefficients to reconstruct wavefront aberration for a reduced-size pupil. RESULTS: Wavefront aberration exhibits a marked variance of the order of 0.45 microns near the edge of the pupil whereas the central part appears to be measured more consistently. Dispersion of Zernike expansion coefficients was lower when calculated by the scaling method for a pupil diameter of 3 mm as compared to the one introduced when only the central 3 mm of the Shack – Hartmann image was evaluated. Signal-to-noise ratio was lower for higher order aberrations than for low order coefficients corresponding to the sphero-cylindrical error. For each subject a number of Zernike expansion coefficients was below noise level and should not be considered trustworthy. CONCLUSION: Wavefront aberration data used in clinical care should not be extracted from a single measurement, which represents only a static snapshot of a dynamically changing aberration pattern. This observation must be taken into account in order to prevent ambiguous conclusions in clinical practice and especially in refractive surgery

    Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines.</p> <p>Methods</p> <p>In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR.</p> <p>Results</p> <p>Two GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained <it>in vitro</it> for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor cells seemed to be blocked at the progenitor cell phase: most of them expressed nestin but only a few co-expressed differentiation markers. Transmission electron microscopy showed that GSCs were at a primitive stage of differentiation with low autophagic activity. Array-based comparative genomic hybridization revealed genetic alterations common to both SU-1 and SU-2, including amplification of the oncogene <it>EGFR </it>and deletion of the tumor suppressor <it>PTEN</it>, while some genetic alterations such as amplification of <it>MTA1 </it>(metastasis associated gene 1) only occurred in SU-2.</p> <p>Conclusion</p> <p>The GSPC lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy. Such investigations may eventually have major impacts on the understanding and treatment of gliomas.</p
    corecore