318 research outputs found

    Chemotherapy Induced Peripheral Neuropathy and Foot Posture in Pediatric Cancer Patients

    Get PDF
    Background Physical therapists have recognized a potential change in foot structure among pediatric cancer patients undergoing chemotherapy; however it has not been empirically investigated. Purpose The purpose of this study was to determine if patients with chemotherapeutic induced peripheral neuropathy (CIPN) develop foot posture abnormalities when compared to gender and age matched controls. We hypothesized that patients with CIPN, especially distal motor CIPN, or ankle ROM limitations demonstrate foot posture abnormalities. Methods The medial and posterior foot aspects of pediatric cancer patients (n=38) and age and gender matched controls (n=38) were digitally photographed in a standard position while bearing weight. MMT of great toe extension (GTE) and ankle dorsiflexion (DF), PROM of ankle DF, and peripheral nerve function (using the ped-mTNS) was measured for all subjects. Photographs were analyzed using four aspects of the Foot Posture Index (FPI), calcaneal tilt angle, navicular height, and medial longitudinal arch angle. Independent sample T-test and Mann-Whitney U were used to compare group’s foot measures. Spearman correlation statistic was used to determine associations between strength or ROM measures and foot posture. Results Subjects’ mean age was 11 years (range 5-18) and 37% of the population was male. Children undergoing cancer treatment had higher scores on the ped-mTNS (10.5 vs. 0.7, p\u3c0.001), limited ankle DF PROM (Right 8.3 vs 14.2 degrees, p\u3c0.001, Left 8.5 vs 14.3 degrees, p\u3c0.001), and decreased strength (right GTE median 3 vs 5 p\u3c0.001, right ankle DF 4 vs 5 p\u3c0.001). No significant differences were found between groups in foot posture measurements. A modest, but significant, correlation was found between L GTE strength, total FPI on the left foot (rS=0.29, p=0.01), and left calcaneal tilt angle (rS=0.27, p=0.02). Right ankle DF PROM was only correlated to right navicular height (rS=-0.25, p=0.04). Conclusion Our data do not support the hypothesis that a difference in foot posture between pediatric cancer patients and healthy controls exists. Although chemotherapy is linked to foot muscular weakness and limited ankle ROM, it was not shown to be strongly correlated to structural changes in foot posture. Limitations of this study include use of a modified FPI and possible impact of PT intervention

    Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), in sub-Saharan African farming landscapes: a review of the factors determining abundance

    Get PDF
    Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of smallholder households in Sub-Saharan Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. In this review we critically assess the knowledge base relating to factors that may lead to high population densities of Sub-Saharan African (SSA) Bemisia tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver long-term sustainable solutions to manage both the vectors and the viruses that they transmit. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little available published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact B. tabaci population dynamics and its natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay or avoid the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps

    Implementing mass rearing of trissolcus japonicus (Hymenoptera: Scelionidae) on cold-stored host eggs

    Get PDF
    Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), a pest of Asian origin, has been causing severe damage to Italian agriculture. The application of classical biological control by the release of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), an exotic egg parasitoid, appears to be one promising solution. In Italy, releases of T. japonicus in the field were authorized in 2020. In this study, some parameters that could influence the rearing of T. japonicus in insectaries were investigated. A significantly higher production of progeny was observed on host eggs stored at 6◦C (86.5%) compared to −24◦C (48.8%) for up to two months prior to exposure to parasitism. There were no significant differences in progeny production from single females in a vial provided with only one egg mass (83.2%) or 10 females inside a cage with 6 egg masses (83.9%). The exposure of parasitoids to refrigerated (6◦C) egg masses of H. halys for 72 h led to a significantly higher production of progeny (62.1%) compared to shorter exposures for 48 (44.0%) or 24 h (37.1%). A decline in production of progeny by the same female was detected between the first (62.1%) and the second parasitization (41.3%). Adult parasitoids stored at 16◦C for up to 90 days had an 87.1% survival rate, but a significant decrease in progeny production was detected. These parameters could be adjusted when rearing T. japonicus for specific aims such as the production of individuals for field release or colony maintenance

    Combining irradiation and biological control against brown marmorated stink bug: are sterile eggs a suitable substrate for the egg parasitoid Trissolcus Japonicus?

    Get PDF
    The brown marmorated stink bug (BMSB), Halyomorpha halys, is a phytophagous invasive pest native to south-eastern Asia, and it is now distributed worldwide. This species is considered to be one of the most damaging insect pests in North America and in Europe. In agriculture, the predominant approach to managing BMSB is based on the use of insecticides, specifically pyrethroids and neonicotinoids. Unfortunately, the biology of the species and its facility to develop mechanisms of resistance to available pesticides has induced farmers and scientists to develop different, least-toxic, and more effective strategies of control. In a territorial area-wide approach, the use of a classical biological control program in combination with other least-toxic strategies has been given prominent consideration. Following exploratory surveys in the native range, attention has focused on Trissolcus japonicus, a small scelionid egg parasitoid wasp that is able to oviposit and complete its larval development in a single egg of H. halys. A common method for detecting egg parasitoids in the native range involves the placement of so-called 'sentinel' egg masses of the pest in the environment for a short period, which are then returned to the laboratory to determine if any of them are parasitized. Outside of the area of origin, the use of fertile sentinel eggs of the alien species may lead to the further release of the pest species; an alternative is to use sterile sentinel eggs to record the presence of new indigenous egg parasitoids or to detect the dispersal of alien species (in this case, T. japonicus) released in a new environment to control the target insect pest species. This study evaluated the performance of three types of sterile sentinel eggs as a suitable substrate for the oviposition and larval development of the egg parasitoid T. japonicus in a context of combining classical biological control with a Sterile Insect Technique (SIT) approac

    Footprints and Ootheca of Lycorma delicatula Influence Host-Searching and -Acceptance of the Egg-Parasitoid Anastatus orientalis.

    Get PDF
    AbstractThe spotted lanternfly, Lycorma delicatula White (1845) (Hemiptera: Fulgoridae), is an invasive insect that was first reported in North America in Berks County, Pennsylvania, in 2014. It is a polyphagous phloem feeder that attacks over 70 plant species, threatening the agricultural, lumber, and ornamental industries of North America. Infestations of the pest have been reported in several U.S. counties, and a lack of endemic predators and parasitoids feeding on L. delicatula suggests a release from natural enemies in the invaded range. An egg-parasitoid Anastatus orientalis (Hymenoptera: Eupelmidae) was reported attacking L. delicatula at high rates in its native range and may play a key role in reducing its populations there. To better understand the foraging behavior of A. orientalis, a series of behavioral experiments were conducted to determine successful parasitism and behavioral responses to traces left by adult L. delicatula and to the oothecae which cover their eggs. Our results suggest that wasps detected chemical traces left by L. delicatula adults while walking on surfaces and exhibited a strong arrestment response. Moreover, wasps preferred to oviposit in egg masses with intact oothecae. The implications of these findings are herein discussed with regard to the exploitation of host kairomones by foraging wasps, as well as to its ability to overcome host structural defenses

    RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bed bugs (<it>Cimex lectularius</it>) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of <it>C. lectularius </it>has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance.</p> <p>Results</p> <p>We performed a next-generation RNA sequencing (RNA-<it>Seq</it>) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of <it>C. lectularius</it>. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from <it>de novo </it>assembled mRNA-<it>Seq </it>tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione <it>S</it>-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid.</p> <p>Conclusions</p> <p>We developed significant molecular resources for <it>C. lectularius </it>putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-<it>Seq </it>profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in <it>C. lectularius</it>. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in <it>C. lectularius</it>.</p

    Ganaspis kimorum (Hymenoptera: Figitidae), a promising parasitoid for biological control of Drosophila suzukii (Diptera: Drosophilidae)

    Get PDF
    Ganaspis Foerster includes several cryptic species that are important larval parasitoids of the invasive pest Drosophila suzukii (Matsumura), spotted-wing drosophila (SWD). Drosophila suzukii, native to Asia, was first discovered in 2008 in North America and Europe, becoming a devastating pest of soft-skinned fruit crops. Biological control could be among the safest, most environmentally benign, and cost-effective methods for long-term and landscape-level management of this invasive pest. Foreign exploration in East Asia discovered several major larval D. suzukii parasitoids. One of them was initially described as Ganaspis brasiliensis (Ihering) and consisted of 2 major genetic groups (G1 and G3). The groups are now recognized as 2 different species, Ganaspis kimorum Buffington and Ganaspis lupini Buffington. The more host-specific species G. kimorum was selected and approved for field release in the United States in 2021 and has been widely released since 2022. Here, we provide a comprehensive overview of the parasitoid’s taxonomy, current known distribution, biology, ecology, mass-rearing methods, and biological control potentia
    corecore