68 research outputs found
Spectrally-resolved UV photodesorption of CH4 in pure and layered ices
Context. Methane is among the main components of the ice mantles of
insterstellar dust grains, where it is at the start of a rich solid-phase
chemical network. Quantification of the photon-induced desorption yield of
these frozen molecules and understanding of the underlying processes is
necessary to accurately model the observations and the chemical evolution of
various regions of the interstellar medium. Aims. This study aims at
experimentally determining absolute photodesorption yields for the CH4 molecule
as a function of photon energy. The influence of the ice composition is also
investigated. By studying the methane desorption from layered CH4:CO ice,
indirect desorption processes triggered by the excitation of the CO molecules
is monitored and quantified. Methods. Tunable monochromatic VUV light from the
DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91
nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice
samples. The release of species in the gas phase is monitored by quadrupole
mass spectrometry and absolute photodesorption yields of intact CH4 are
deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV
(~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4,
which confirms a desorption mechanism mediated by electronic transitions in the
ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a
pattern characteristic of CO absorption, indicating desorption induced by
energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from
the pure ice in various interstellar environments is around 2.0 x 10^-3
molecules per incident photon. Results on CO-induced indirect desorption of CH4
provide useful insights for the generalization of this process to other
molecules co-existing with CO in ice mantles
Recommended from our members
On the representation error in data assimilation
Representation, representativity, representativeness error, forward interpolation error, forward model error, observation operator error, aggregation error and sampling error are all terms used to refer to components of observation error in the context of data assimilation. This paper is an attempt to consolidate the terminology that has been used in the earth sciences literature and was suggested at a European Space Agency workshop held in Reading in April 2014. We review the state-of-the-art, and through examples, motivate the terminology. In addition to a theoretical framework, examples from application areas of satellite data assimilation, ocean reanalysis and atmospheric chemistry data assimilation are provided. Diagnosing representation error statistics
as well as their use in state-of-the-art data assimilation systems is discussed within a consistent framework
Simultaneous Quantitation of Amino Acid Mixtures using Clustering Agents
A method that uses the abundances of large clusters formed in electrospray ionization to determine the solution-phase molar fractions of amino acids in multi-component mixtures is demonstrated. For solutions containing either four or 10 amino acids, the relative abundances of protonated molecules differed from their solution-phase molar fractions by up to 30-fold and 100-fold, respectively. For the four-component mixtures, the molar fractions determined from the abundances of larger clusters consisting of 19 or more molecules were within 25% of the solution-phase molar fractions, indicating that the abundances and compositions of these clusters reflect the relative concentrations of these amino acids in solution, and that ionization and detection biases are significantly reduced. Lower accuracy was obtained for the 10-component mixtures where values determined from the cluster abundances were typically within a factor of three of their solution molar fractions. The lower accuracy of this method with the more complex mixtures may be due to specific clustering effects owing to the heterogeneity as a result of significantly different physical properties of the components, or it may be the result of lower S/N for the more heterogeneous clusters and not including the low-abundance more highly heterogeneous clusters in this analysis. Although not as accurate as using traditional standards, this clustering method may find applications when suitable standards are not readily available
Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides
Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal C_αâC or NâC_α bond rather than the typical CαâC bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied Ï orbital on the ÎČ-carbon and the NâC_α bond, leading to low-barrier ÎČ-cleavage of the NâC_α bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and zâą ions, whereas C-terminal interaction leads to effective cleavage of the C_αâC bond through rapid loss of isocyanic acid. Dissociation of the C_αâC bond may also occur via water loss followed by ÎČ-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes
- âŠ