1,256 research outputs found

    Model Checking Tap Withdrawal in C. Elegans

    Full text link
    We present what we believe to be the first formal verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in \emph{C. Elegans}, the common roundworm. TW is a reflexive behavior exhibited by \emph{C. Elegans} in response to vibrating the surface on which it is moving; the neural circuit underlying this response is the subject of this investigation. Specifically, we perform reachability analysis on the TW circuit model of Wicks et al. (1996), which enables us to estimate key circuit parameters. Underlying our approach is the use of Fan and Mitra's recently developed technique for automatically computing local discrepancy (convergence and divergence rates) of general nonlinear systems. We show that the results we obtain are in agreement with the experimental results of Wicks et al. (1995). As opposed to the fixed parameters found in most biological models, which can only produce the predominant behavior, our techniques characterize ranges of parameters that produce (and do not produce) all three observed behaviors: reversal of movement, acceleration, and lack of response

    Spatial heterogeneity enhances and modulates excitability in a mathematical model of the myometrium

    Get PDF
    The muscular layer of the uterus (myometrium) undergoes profound changes in global excitability prior to parturition. Here, a mathematical model of the myocyte network is developed to investigate the hypothesis that spatial heterogeneity is essential to the transition from local to global excitation which the myometrium undergoes just prior to birth. Each myometrial smooth muscle cell is represented by an element with FitzHugh–Nagumo dynamics. The cells are coupled through resistors that represent gap junctions. Spatial heterogeneity is introduced by means of stochastic variation in coupling strengths, with parameters derived from physiological data. Numerical simulations indicate that even modest increases in the heterogeneity of the system can amplify the ability of locally applied stimuli to elicit global excitation. Moreover, in networks driven by a pacemaker cell, global oscillations of excitation are impeded in fully connected and strongly coupled networks. The ability of a locally stimulated cell or pacemaker cell to excite the network is shown to be strongly dependent on the local spatial correlation structure of the couplings. In summary, spatial heterogeneity is a key factor in enhancing and modulating global excitability

    Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions

    Get PDF
    Early quantitative analyses of conduction velocities in unmyelinated nerve studied in a constantly iso-osmotic volume conductor were extended to an analysis of the effects of varying extracellular osmolarities on conduction velocities of surface membrane action potentials in Rana esculenta skeletal muscle fibres. Previous papers had reported that skeletal muscle fibres exposed to a wide range of extracellular sucrose concentrations resemble perfect osmometers with increased extracellular osmolarity proportionally decreasing fibre volume and therefore diminishing fibre radius, a. However, classical electrolyte theory (Robinson and Stokes 1959, Electrolyte solutions 2nd edn. Butterworth & Co. pp 41–42) would then predict that the consequent increases in intracellular ionic strength would correspondingly decrease sarcoplasmic resistivity, Ri. An extension of the original cable analysis then demonstrated that the latter would precisely offset its expected effect of alterations in a on the fibre axial resistance, ri, and leave action potential conduction velocity constant. In contrast, other reports (Hodgkin and Nakajima J Physiol 221:105–120, 1972) had suggested that Riincreased with extracellular osmolarity, owing to alterations in cytosolic viscosity. This led to a prediction of a decreased conduction velocity. These opposing hypotheses were then tested in muscle fibres subject to just-suprathreshold stimulation at a Vaseline seal at one end and measuring action potentials and their first order derivatives, dV/dt, using 5–20 MΩ, 3 M KCl glass microelectrodes at defined distances away from the stimulus sites. Exposures to hyperosmotic, sucrose-containing, Ringer solutions then reversibly reduced both conduction velocity and maximum values of dV/dt. This was compatible with an increase in Ri in the event that conduction depended upon a discharge of membrane capacitance by propagating local circuit currents through initially passive electrical elements. Conduction velocity then showed graded decreases with increasing extracellular osmolarity from 250–750 mOsm. Action potential waveforms through these osmolarity changes remained similar, including both early surface and the late after-depolarisation events reflecting transverse tubular activation. Quantitative comparisons of reduced-χ 2 values derived from a comparison of these results and the differing predictions from the two hypotheses strongly favoured the hypothesis in which Riincreased rather than decreased with hyperosmolarity

    Deep Neural Networks - A Brief History

    Full text link
    Introduction to deep neural networks and their history.Comment: 14 pages, 14 figure

    Canards existence in the Hindmarsh-Rose model

    Get PDF
    In two previous papers we have proposed a new method for proving the existence of "canard solutions" on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381-431; J.M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of "canard solutions" for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of "canard solutions" in the Hindmarsh-Rose model

    Canards existence in the Hindmarsh-Rose model

    Get PDF
    In two previous papers, we have proposed a new method for proving the existence of "canard solutions" on one hand for three- and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand, for four-dimensional singularly perturbed systems with two fast variables; see [4, 5]. The aim of this work is to extend this method, which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of "canard solutions" for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of "canard solutions" in the Hindmarsh-Rose model

    A lifetime’s adventure in extracellular K+ regulation: the Scottish connection

    Get PDF
    In a career that has spanned 45 years and shows no signs of slowing down, Dr Bruce Ransom has devoted considerable time and energy to studying regulation of interstitial K+. When Bruce commenced his studies in 1969 virtually nothing was known of the functions of glial cells, but Bruce’s research contributed to the physiological assignation of function to mammalian astrocytes, namely interstitial K+ buffering. The experiments that I describe in this review concern the response of the membrane potential (Em) of in vivo cat cortical astrocytes to changes in [K+]o, an experimental manoeuvre that was achieved in two different ways. The first involved recording the Em of an astrocyte while the initial aCSF was switched to one with different K+, whereas in the second series of experiments the cortex was stimulated and the response of the astrocyte Em to the K+ released from neighbouring neurons was recorded. The astrocytes responded in a qualitatively predictable manner, but quantitatively the changes were not as predicted by the Nernst equation. Elevations in interstitial K+ are not sustained and K+ returns to baseline rapidly due to the buffering capacity of astrocytes, a phenomenon studied by Bruce, and his son Chris, published 27 years after Bruce’s initial publications. Thus, a lifetime spent investigating K+ buffering has seen enormous advances in glial research, from the time cells were identified as ‘presumed’ glial cells or ‘silent cells’, to the present day, where glial cells are recognised as contributing to every important physiological brain function

    Combining polynomial chaos expansions and genetic algorithm for the coupling of electrophysiological models

    Get PDF
    The number of computational models in cardiac research has grown over the last decades. Every year new models with di erent assumptions appear in the literature dealing with di erences in interspecies cardiac properties. Generally, these new models update the physiological knowledge using new equations which reect better the molecular basis of process. New equations require the fi tting of parameters to previously known experimental data or even, in some cases, simulated data. This work studies and proposes a new method of parameter adjustment based on Polynomial Chaos and Genetic Algorithm to nd the best values for the parameters upon changes in the formulation of ionic channels. It minimizes the search space and the computational cost combining it with a Sensitivity Analysis. We use the analysis of di ferent models of L-type calcium channels to see that by reducing the number of parameters, the quality of the Genetic Algorithm dramatically improves. In addition, we test whether the use of the Polynomial Chaos Expansions improves the process of the Genetic Algorithm search. We conclude that it reduces the Genetic Algorithm execution in an order of 103 times in the case studied here, maintaining the quality of the results. We conclude that polynomial chaos expansions can improve and reduce the cost of parameter adjustment in the development of new models.Peer ReviewedPostprint (author's final draft

    SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo

    Get PDF
    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work

    Integral transform solution of random coupled parabolic partial differential models

    Full text link
    [EN] Random coupled parabolic partial differential models are solved numerically using random cosine Fourier transform together with non-Gaussian random numerical integration that captures the highly oscillatory behaviour of the involved integrands. Sufficient condition of spectral type imposed on the random matrices of the system is given so that the approximated stochastic process solution and its statistical moments are numerically convergent. Numerical experiments illustrate the results.Spanish Ministerio de Economia, Industria y Competitividad (MINECO); Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER UE), Grant/Award Number: MTM2017-89664-PCasabán Bartual, MC.; Company Rossi, R.; Egorova, VN.; Jódar Sánchez, LA. (2020). Integral transform solution of random coupled parabolic partial differential models. Mathematical Methods in the Applied Sciences. 43(14):8223-8236. https://doi.org/10.1002/mma.6492S822382364314Bäck, J., Nobile, F., Tamellini, L., & Tempone, R. (2010). Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. Spectral and High Order Methods for Partial Differential Equations, 43-62. doi:10.1007/978-3-642-15337-2_3Bachmayr, M., Cohen, A., & Migliorati, G. (2016). Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 51(1), 321-339. doi:10.1051/m2an/2016045Ernst, O. G., Sprungk, B., & Tamellini, L. (2018). Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs). SIAM Journal on Numerical Analysis, 56(2), 877-905. doi:10.1137/17m1123079Sheng, D., & Axelsson, K. (1995). Uncoupling of coupled flows in soil—a finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19(8), 537-553. doi:10.1002/nag.1610190804Mitchell, J. K. (1991). Conduction phenomena: from theory to geotechnical practice. Géotechnique, 41(3), 299-340. doi:10.1680/geot.1991.41.3.299Das, P. K. (1991). Optical Signal Processing. doi:10.1007/978-3-642-74962-9Ashkenazy, Y. (2017). Energy transfer of surface wind-induced currents to the deep ocean via resonance with the Coriolis force. Journal of Marine Systems, 167, 93-104. doi:10.1016/j.jmarsys.2016.11.019Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764Galiano, G. (2012). On a cross-diffusion population model deduced from mutation and splitting of a single species. Computers & Mathematics with Applications, 64(6), 1927-1936. doi:10.1016/j.camwa.2012.03.045Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical solutions of random mean square Fisher‐KPP models with advection. Mathematical Methods in the Applied Sciences, 43(14), 8015-8031. doi:10.1002/mma.5942Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness. Mathematics, 7(9), 853. doi:10.3390/math7090853Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140. doi:10.1016/j.cam.2006.11.021Iserles, A. (2004). On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA Journal of Numerical Analysis, 24(3), 365-391. doi:10.1093/imanum/24.3.365Ma, J., & Liu, H. (2018). On the Convolution Quadrature Rule for Integral Transforms with Oscillatory Bessel Kernels. Symmetry, 10(7), 239. doi:10.3390/sym10070239Jódar, L., & Goberna, D. (1996). Exact and analytic numerical solution of coupled diffusion problems in a semi-infinite medium. Computers & Mathematics with Applications, 31(9), 17-24. doi:10.1016/0898-1221(96)00038-7Jódar, L., & Goberna, D. (1998). A matrix D’Alembert formula for coupled wave initial value problems. Computers & Mathematics with Applications, 35(9), 1-15. doi:10.1016/s0898-1221(98)00052-2Ostrowski, A. M. (1959). A QUANTITATIVE FORMULATION OF SYLVESTER’S LAW OF INERTIA. Proceedings of the National Academy of Sciences, 45(5), 740-744. doi:10.1073/pnas.45.5.740Ashkenazy, Y., Gildor, H., & Bel, G. (2015). The effect of stochastic wind on the infinite depth Ekman layer model. EPL (Europhysics Letters), 111(3), 39001. doi:10.1209/0295-5075/111/3900
    corecore