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Abstract The scientific interest attracted by Spiking

Neural Networks (SNN) has lead to the development of

tools for the simulation and study of neuronal dynamics

ranging from phenomenological models to the more

sophisticated and biologically accurate Hodgkin-and-Hux-

ley-based and multi-compartmental models. However,

despite the multiple features offered by neural modelling

tools, their integration with environments for the simula-

tion of robots and agents can be challenging and time

consuming. The implementation of artificial neural circuits

to control robots generally involves the following tasks: (1)

understanding the simulation tools, (2) creating the neural

circuit in the neural simulator, (3) linking the simulated

neural circuit with the environment of the agent and (4)

programming the appropriate interface in the robot or agent

to use the neural controller. The accomplishment of the

above-mentioned tasks can be challenging, especially for

undergraduate students or novice researchers. This paper

presents an alternative tool which facilitates the simulation

of simple SNN circuits using the multi-agent simulation

and the programming environment Netlogo (educational

software that simplifies the study and experimentation of

complex systems). The engine proposed and implemented

in Netlogo for the simulation of a functional model of SNN

is a simplification of integrate and fire (I&F) models. The

characteristics of the engine (including neuronal dynamics,

STDP learning and synaptic delay) are demonstrated

through the implementation of an agent representing an

artificial insect controlled by a simple neural circuit. The

setup of the experiment and its outcomes are described in

this work.

Keywords Spiking neurons � Neural networks � Agents �
Modelling � Simulations � Artificial life � Artificial
intelligence � Robots � Membrane potential � Neural
circuit � Spike timing � Dependent plasticity � STDP �
Neuro engineering

1 Introduction

Artificial Neural Networks of third generation known as

Spiking Neural Networks (SNN) have been gaining the

attention of the scientific community in different disci-

plines, including neuroscience, computer science, cognitive

science, physics and mathematics. This has lead to the

development of tools (e.g. GENESIS [1], NEURON [2],

SNNAP [3]) for the simulation and study of neuronal

dynamics ranging from phenomenological models to the

more sophisticated and biologically accurate Hodgkin-and-

Huxley-based [4] and multi-compartmental models [5].

These tools have allowed experimenting with complex

neural dynamics, from purely computational and artificial

to biological scenarios. However, despite the multiple

features offered by neural modelling tools, their integration

with environments for the simulation of robots and agents

can be challenging and time consuming if the user is not

familiar with the technicalities behind the tools.

There are different approaches that can be taken in order

to simulate agents and robots controlled by SNN circuits,

depending of the objectives and requirements of the

investigation being carried out (including level of biological
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accuracy, required performance, types of interactions

between agents and their environment). These approaches

can be summarized as follows: (1) using software inter-

faces: between two (or more) software applications where

one of them simulates the SNN models, while the other

application is responsible for the simulation of the robot/

agent virtual environment; (2) using high-level program-

ming languages (e.g. C??, Java, Python) combined with

the corresponding programming libraries for the SNN

models implementation and simulation of the robot/agent

virtual world; (3) integrated simulation environments: using

standalone software applications or Suites (e.g. AI-SIM-

COG [6], AnimatLab [7]) that support the implementation

of SNN models into agents/robots while providing a sim-

ulated virtual world for experimentation.

The interface approach has the advantage that the features

of different simulation tools can be combined (i.e. iqr [8]

with arduino [9], Brian [10] and SimSpark [11]). However,

the possibility of combining two different applications

depends on the communication interfaces of each applica-

tion. In terms of simplicity, this approach requires also good

technical knowledge of the different simulation tools and the

software and hardware interfaces to be used. As a second

choice, high-level programming languages such as C?? and

Python are supported by a large community of open-source

and commercial developers which are steadily creating and

maintaining software libraries including those for SNN

modelling (Nemo [12], Nest [13]) and agents and robots

simulations (Gazebo [14], Webots [15]). On the other hand,

the use of programming languages with specialized libraries

requires knowledge of their technicalities including the

software framework, functions, object types and the pro-

gramming language itself. As an alternative, integrated

simulation environments offer all-in-one tools for designing,

implementing an experimenting with SNN models and

agents/robots in simulated or real scenarios. However, this

approach also requires good knowledge of the used tool

including its graphical user interface (GUI), embedded

functions and programming languages or scripts. Moreover,

the process of modelling and simulating is subject to the

features offered by the integrated environment.

Implementing artificial neural circuits to control agents or

robots generally represents a very challenging task, espe-

cially for those who lack extensive experience with complex

programming and simulation tools. This is because of the

several tasks necessary in order to implement sophisticated

neural circuits able to control autonomous systems (i.e.

agents and robots). Firstly, a clear understanding of the

simulation tools is required. Secondly, the neural circuit must

be created in the neural simulator. Thirdly, the simulated

neural circuit must be connected with the simulation envi-

ronment of the agent (or with the communication interfaces

of the robot). Lastly, the appropriate interface in the agent or

robot must be programmed to use the neural controller. In

order to simplify such complex tasks, this paper presents an

alternative tool which facilitates the simulation of simple

SNN circuits and their application in agents using the multi-

agent simulation and programming environment Netlogo

[16], educational software that simplifies the study and

experimentation of complex systems. This paper proposes an

engine implemented in Netlogo, for the simulation of a

functional model of SNN based on a simplified version of

I&F models [17, 18]. The coding of the engine is done

entirely in Netlogo language as a Netlogo model. Therefore,

the experimenters can easily modify or add pieces of code as

required. In order to demonstrate its functionality and

usability, the proposed engine has been used to implement an

agent representing an experimental artificial insect which

learns to navigate in a simulated two-dimensional world

avoiding obstacles and predators while searching for food.

The agent is controlled by a simple neural circuit which

demonstrates some of the SNN neural dynamics including

temporal and spatial summation of incoming pulses, spike

generation, spike timing dependent plasticity (STDP) learn-

ing [19–21] and synaptic delay.

Why Netlogo? Netlogo is a software application that

provides an integrated environment for the simulation and

programming of multi-agent models and the study of

emergent behaviour in complex systems [22]. The Netlogo

programming language offers a set of primitives which

allows the agents to perceive and modify their virtual world

and also to communicate and interact with other agents. In

terms of simplicity, as stated by Tisue and Wilensky [22],

Netlogo is built on the slogan ‘‘low threshold, high ceiling

platform’’ inherited from Logo which describes the lan-

guage as approachable for students and novices but at the

same time providing the capabilities required by advanced

users in order to create sophisticated models.

Apart from its simplicity, one of the main advantages of

using Netlogo in this work is that it allows to monitor and

manipulate on each single simulation iteration the state of

each element of the neural circuit including: (1) neurons and

their internal variables, (2) synapses and their parameters

(efficacy and delay) and (3) ongoing pulses. Manipulation

of the neural circuit can be done with commands given

through the observer prompt or by using the agent moni-

toring tool provided by the Netlogo GUI. The architecture

of the engine is explained in detail in the following sections.

2 Methodology

2.1 The implemented spiking model

The proposed SNN engine is a simplification of integrate

and fire (I&F) models which recreate to some extent the
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phenomenological dynamics of neurons while abstracting

the biophysical processes behind them. In the simplest

terms, the implemented model assumes that the only inputs

come from pulses of presynaptic neurons and without any

imposed external currents.

For the simulation, a similar approach to Upegui et al.

[23] has been adopted, modelling the artificial neuron as a

finite-state machine where the states transitions depend

mainly on a variable representing the membrane potential

of the cell. All the characteristics of the artificial neuron

including: (1) membrane potential, (2) resting potential, (3)

spike threshold, (4) excitatory and inhibitory postsynaptic

response, (5) exponential decay rate and (6) absolute and

refractory periods are enclosed in two possible states: open

and absolute refractory.

In the open state, the neuron is receptive to input pulses

coming from presynaptic neurons. The amplitude of post-

synaptic potentials elicited by presynaptic pulses is given

by the function pspðwijÞ (see Fig. 1) where wij is the

synaptic efficacy between presynaptic neuron j and post-

synaptic neuron i. The membrane perturbations reported by

pspðwijÞ are added (excitatory postsynaptic potential EPSP)

or subtracted (inhibitory postsynaptic potential IPSP) to the

actual value of the membrane potential u.

If the neuron firing threshold h is not reached by u, then

u begins to decay [see decay(u) in Fig. 1] towards a fixed

resting potential rp. On the other hand, as occurs in other

integrate and fire implementations, if the membrane

potential reaches a set threshold, an action potential or

spiking process is initiated. In the presented model, when u

reaches the firing threshold h, this triggers a state transition
from the open to the absolute-refractory state. During the

latter, u is set to a fixed refractory potential value av (see

Fig. 2) and all incoming presynaptic pulses are neglected

by u. At the initiation of the absolute-refractory state, an

iteration counter ic is set to a value nr representing the

duration of this state expressed in number of simulation

iterations (or Netlogo ticks). Once the nr iterations are

completed, a state transition to the open state is triggered

by the condition ic ¼ 0.

As shown in Fig. 1 all the dynamics of the simulated

neuron are encapsulated within the two states, open and

absolute refractory, while the entire states transition

depends on the two variables u and ic.

Figure 2 below illustrates the behaviour of the mem-

brane potential in response to incoming presynaptic spikes

according to the simulation approach explained above:

The following algorithm which is based on one of the

simulation methods suggested by Jahnke et al. [24] illus-

trates how the different processes are implemented within

the two machine states:

foreach timestep in SI do
foreach neuron in N do

if neuron state = open then
ReceivePulses()
if u >= θ then

PreparePulseFiring()
SetRefractoryState()

else
decay(u)

end
else

if refractory counter > 0 then
refractory counter = refractory counter - 1

else
SetOpenState()

end
end
foreach ActiveOutgoingSynapse in OS do

foreach ScheduledPulse in SL do
ProcessPulsesQueue ()

end
end

end
end

In the algorithm above, SI indicates the number of

simulation iterations or time steps. N represents the number

of neurons each having two operational states determined

by the variable neuron_state. In the open state, Receive-

Pulses() is receiving and handling the incoming pulses. If

Fig. 1 Model state transition

represented with a Harel state

chart
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an action potential is triggered (membrane potential u C

threshold h), an output spike is generated and transmitted

(taking into account synaptic delays) by PreparePulseFir-

ing(). The schedule of outgoing pulses is followed by

SetRefractoryState() which performs the state transition to

absolute refractory and initializes the refractory_counter

with the (fix) duration of the absolute refractory period. If

the condition (u C h) is not satisfied, decay(u) brings

u towards the neuron resting potential on each iteration. If

neuron_state is not open, then the state is assumed to be

absolute_refractory. In this state, refractory_counter is

decreased on each iteration until reaching zero meaning the

end of the absolute refractory period and the transition to

open state. Independently of the neuron state, the simula-

tion iterates through the list of neuron outgoing-synapses

OS. For each outgoing synapse, the pulses waiting to be

transmitted SL are processed by ProcessPulsesQueue().

2.2 Comparison with the canonical integrate

and fire model

Below we list the main differences and similarities between

our implementation and the canonical integrate and fire

model.

Fig. 2 Modelling of the

membrane potential in the

implemented SNN model

Integrate and fire model (I&F) Our model

Membrane

potential

The canonical integrate and fire [25] represents the evolution of

the neurone membrane potential through the time derivative

of the Law of Capacitance: IðtÞ ¼ Cm
dVmðtÞ
dt

‘Integrate’ refers to the behaviour of the model when input

currents are applied resulting in the increase of the membrane

voltage until it reaches a set threshold which initiates a spike

(fire event). The I&F model does not implement the decay of

the membrane voltage towards its resting potential. Thus the

membrane will keep a sub-threshold voltage indefinitely until

new input currents make the membrane cross the firing

threshold

The evolution of the membrane potential over time is described

by the variable u. The behaviour of u(t) depends on: (1) the

machine state at time t, (2) the applied currents from incoming

spikes and (3) the membrane potential leakiness (see below)
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2.3 The virtual brain for the virtual insect

2.3.1 The STDP learning rule

In this paper, the STDP model proposed by Gerstner et al.

[19] has been implemented and used as the underlying

learning mechanism for the proposed experimental neural

circuit. In STDP, the synaptic efficacy is adjusted according

to the relative timing of the incoming presynaptic spikes and

the action potential triggered at the postsynaptic neuron.

This can be expressed as follows:

1. The presynaptic spikes that arrive shortly before

(within a given range or learning window) the

postsynaptic neuron fires are considered as contribu-

tors for the depolarization of the postsynaptic neuron.

Consequently, these spikes reinforce the weights (in

terms of artificial neurons) of their respective synapses.

2. The presynaptic spikes that arrive shortly after (within

a given range or learning window) the postsynaptic

neuron fires are not considered as contributors for the

action potential of the postsynaptic neuron. Conse-

quently, these spikes weaken the weights of their

respective synapses.

The following formula [19] describes the weight change of

a synapse through the STDP model for presynaptic and

postsynaptic neurons represented with j and i respectively.

Integrate and fire model (I&F) Our model

Leakiness The decay or leakiness of the membrane potential is

implemented as an extension of the I&F model: the leaky

integrate-and fire Model (LI&F) recreates the dynamics of a

neuron by means of a current I flowing through the parallel

connection of a resistor with a capacitor in an electrical

circuit [17, 19]. The current I splits in the resistor R and

capacitor C, as follows: IðtÞ ¼ IR þ IC ¼ uðtÞ
R
þ C du

dt

where the voltage across the capacitor C is depicted with u and

represents the neuron membrane potential. By introducing

the membrane time constant Tm ¼ RC, the above equation

can be rewritten as: Tm
du
dt
¼ �uðtÞ þ RIðtÞ

with Tm quantifying the rate at which u decays to its resting

potential

The decay of the membrane potential u is implemented

through the decay() process by using two different functions

(negative_leak_kernel and positive_leak_kernel) to describe

the hyperpolarization and depolarization processes,

respectively:

If Rest_pot \u\h then

u ¼ u� negative_leak_kernel

else If u\ Rest_pot then

u ¼ uþ positive_leak_kernel

Rest_pot is the resting potential and h the firing threshold. In

our model, both negative and positive kernels implement

exponential decay functions

Spike

initiation

The mechanism of spike initiation is established through a

threshold condition: uðtÞ ¼ h. Thus, if a given threshold h is

reached at t ¼ tðf Þ; then the neuron is said to fire a spike at

time tðf Þ

Same as I&F

Fixed firing threshold

Action

potential

The form of the generated action potential is not described

explicitly in the LI&F model [17]. Following the fire event,

the potential is reset: ureset \h. Then, when t[ tðf Þ the
dynamic behaviour continues as described by the membrane

time constant Tm

Same as I&F

During the generation of action potential, the system initializes

the absolute_refractory_period timer

Refractoriness The absolute refractory period is generally implemented by

temporarily stopping the dynamics immediately after the

threshold conditions have been reached. After the stop time,

the membrane potential dynamics start again with u ¼ ureset
where ureset\h

Same as I&F

The state of the system remains as absolute_refractory as long

as the absolute_refractory_period timer is still alive

Synapses Following the framework of the I&F model, given a neuron i,

its total input current is defined as the sum of all its incoming

current pulses:

TiðtÞ ¼
P

j wij

P
f a t � t

ðf Þ
j

� �

where aðt � t
ðf Þ
j Þ describes the time course from the

presynaptic firing time t(f) at neuron j and the arrival time t

at postsynaptic neuron i. Wij represents the synaptic weight

or efficacy between neuron j and the postsynaptic neuron

i. The postsynaptic current generated by an incoming spike

depends on the elicited change in the conductance of the

postsynaptic membrane [19]

Similarly to I&F, the total input current is also expressed as:

TiðtÞ ¼
P

j wij

P
f aðt � t

ðf Þ
j Þ

However, in contrast with the I&F framework, in our model

the postsynaptic current only takes into account the efficacy

Wij of the synapses but not the conductance of the

postsynaptic membrane
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The arrival times of the presynaptic spikes at the postsy-

naptic neuron are indicated by t
f
j where f ¼ 1; 2; 3; . . .N

enumerates the presynaptic spikes. tni with n ¼ 1; 2; 3; . . .N

counts the firing times of the postsynaptic neuron i:

Dwj ¼
XN

f¼1

XN

n¼1

W tni � t
f
j

� �
ð1Þ

Let Dt ¼ tni � t
f
j .The connection weight resulting from the

combination of a presynaptic spike with a postsynaptic

action potential is given by the function [19–21]:

WðDtÞ ¼
Aþ expð�Dt=sþÞ; if Dt[ 0

�A� expðDt=s�Þ; if Dt\0

�

ð2Þ

The parameters Aþ and A� indicate the amplitude of the

potentiation and depression of the synaptic weights,

respectively. sþ and s� are the time constants which

describe the exponential shape of the learning window.

In order to create a neural circuit of Spiking neurons that

allow the association of an innate response with a neutral

stimulus, it is necessary to have at least the following

elements:

1. A receptor or sensory input for the unconditioned

stimulus U.

2. A receptor or sensory input for the conditioned or

neutral stimulus C.

3. The motoneuron or actuator activated by the uncon-

ditioned stimulus M.

For U, the unconditioned stimulus must be able to elicit

an immediate reflex-response (action potential) in the

postsynaptic motoneuron. Thus the synapse efficacy of the

presynaptic neuron U (unconditioned input neuron) must

be greater or equal to the activation threshold of the

motoneuron() in order to elicit a postsynaptic action

potential with a single presynaptic spike. For C, the con-

ditioned stimulus must be able to elicit a PSP (postsynaptic

potential) in the postsynaptic motoneuron M. Thus a

synapse between the presynaptic neuron C (conditioned

input neuron) and the postsynaptic motoneuron M must

exist. Given the elements U, C and M, the following

topology could be used to illustrate a simple associative

neural circuit:

The neural circuit in Fig. 3 illustrates two input neurons

C and U each transmitting a pulse to postsynaptic neuron

M. As shown in Fig. 3b, the unconditioned stimulus

transmitted by U arriving at time tfu triggers an action

potential in M at time tfm shortly after the EPSP elicited by

C at time tfc.

Having tfm [ tfc (EPSP in M elicited by C preceding

spike at M) the synaptic efficacy between C and M (Dwc )

would be increased relative to the difference tfm � tfc and the

set parameters of the STDP learning window [19–21]. This

circuit (Fig. 3a) can be taken as a building block to design a

simple neural controller working as an artificial micro-

brain for the simulated insect. However, on its own, this

circuit only allows a limited margin of actions (trigger

reflex or not) in response to the input stimuli. The neural

topology presented below in Fig. 4 extends the previous

circuit in Fig. 3a by adding a second motoneuron and three

input neurons:

Fig. 3 Basic associative topology. a Spikes emitted by input neurons

C and U reaching the synapse with postsynaptic motoneuron M at

times tfc and tfu; respectively. b The spike emitted by C elicits an EPSP

(excitatory postsynaptic potential) of amplitude wc (left dashed line)

at time tfc. At time tfu the spike emitted by U elicits an EPSP of

amplitude Wu (right dashed line) that reaches the threshold h
triggering an action potential at the postsynaptic motoneuron M

Fig. 4 A two-motoneuron circuit
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The topology illustrated in Fig. 4 includes five input

neurons A, B, C, P, F and two motoneurons R and M.

Motoneuron R has the function of a negative tropism, which

consists in moving away or heading in a different direction

(depending on action in actuator_1) when a noxious stim-

ulus is sensed by P. In contrast to R, motoneuronM behaves

as a positive tropism, and thus when F senses a stimulus, the

immediate reaction will be to move towards the direction of

the stimulus. Neurons A, B and C receive inputs from three

different neutral stimuli. These three neurons are initialized

with equal or random synaptic weights with motoneurons R

and M. Neurons P and F receive their inputs from a pain

receptor (nociceptor) and a reward stimulus (e.g. positive-

pheromone, food smell, etc.), respectively. The synaptic

efficacy between P and R is defined such that wfm � hm in

order for the motoneuron R to be activated whenever a

nociceptive stimulus is received in P (reflex reaction of R to

P). Motoneuron R triggers Actuator_1 which is depicted

with a circular arrow. In a similar way, the synaptic efficacy

between F and M is defined such that in order for the

motoneuron M to be activated whenever a rewarding stim-

ulus is received in F (reflex reaction ofM to F). Motoneuron

M triggers Actuator_2 depicted with a right-heading arrow.

The mutual inhibition between R and M leads to a winner-

takes-all behaviour where the first motoneuron which fires

prevents its counterpart to be activated, avoiding the

simultaneous activation of both actuators.

2.4 Anatomy of the virtual insect

2.4.1 The sensory system

The experimental virtual insect is able to process three

types of sensorial information: (1) visual, (2) pain and (3)

pleasant or rewarding sensation. The visual information is

acquired through three photoreceptors (see Fig. 4) where

each one of them is sensitive to one specific colour (black,

red or green). Each photoreceptor is connected with one

afferent neuron which propagates the input pulses towards

the motoneurons. Pain is elicited by a nociceptor whenever

the insect collides with a wall or a predator. A rewarding or

pleasant sensation is elicited by a pheromone (or nutrient

smell) sensor when the insect gets in direct contact with the

originating stimulus.

2.4.2 The motor system

The motor system allows the virtual insect to move forward

or rotate in one direction according to the reflexive beha-

viour described above in Fig. 3. In order to keep the insect

moving even in the absence of external stimuli, the

motoneuron M is connected to a neural oscillator sub-cir-

cuit composed of two neurons H1 and H2 (see Fig. 5)

performing the function of a pacemaker which sends a

periodic pulse to M. The pacemaker is initiated by a pulse

from an input neuron which represents an external input

current (i.e; intracellular electrode). Figure 5 below illus-

trates the complete neural anatomy of the insect.

In Netlogo, there are four types of agents: Turtles, pat-

ches, links and the observer [22]. The virtual insect is

represented by a turtle agent as well as each neuron in the

implemented SNN model. Synapses on the other hand are

represented by links. All simulated entities including the

insect, Neurons and synapses have their own variables and

functions that can be manipulated using standard Netlogo

commands. The Netlogo virtual world consists of a two-

dimensional grid of patches where each patch corresponds

to a point (x, y) in the plane. In a similar way to the turtles,

Fig. 5 The neural anatomy of

the experimental virtual insect
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the patches own a set of primitives which allow the

manipulation of their characteristics and also the pro-

gramming of new functionalities and their interaction with

other agents. The visualization of the simulation is divided

in two areas inside Netlogo’s world-view interface: (1) The

neural circuit topology which is shown on the left half of

the screen and (2) the insect and its environment which are

shown on the right half side of the screen.

The topology screen shown in Fig. 6a on the left reflects

any change (adding or removing components) done to the

neural circuit in each simulation iteration. The world

screen in Fig. 6b shows the simulated virtual world

including patches of three different colours: black, red and

green representing walls, harmful and rewarding stimuli,

respectively. The virtual insect is represented with an ant-

shaped agent that starts moving once the simulation is

initiated. In addition to the simulated world, Netlogo pro-

vides different interface objects for plotting and monitoring

agents behaviour. In the presented simulation, two plots

have been implemented in order to visualize the change

over time of the membrane potential of any two neurons

selected by the experimenter.

3 Results

3.1 The SNN Netlogo-engine

Using Netlogo version 5.2 on a personal computer running

Windows 7 with a CPU Intel Core i7 at 2.9 GHz and 8

Gigabytes of RAM, the simulation of the SNN engine

(including the proposed neural circuit, two membrane

potential plots and the simulated insect’s virtual environ-

ment) was able to run at an average of 10,000 iterations or

ticks per second (tps) using continuous update mode and

with model speed set as fastest in the Netlogo GUI. In order

to test the scalability of the engine, four instances of the

virtual insect with their corresponding neural circuits were

implemented and tested simultaneously within the same

Netlogo model (see Fig. 6). Table 1 below summarizes

these results:

3.2 The virtual insect

The blue arrows in Fig. 7a and b indicate the different

trajectories taken by the virtual insect at different times

during the simulation. At the beginning in Fig. 7a, the

insect moves along the virtual world in a seemingly ran-

dom way colliding equally with all types of different

objects (coloured patches). During the training phase, the

insect is repositioned in its initial coordinates every time it

reaches the virtual world boundaries. Figure 7b shows the

trajectory between 15 and 25 thousand iterations. It can be

seen that the trajectories lengthen as the learning of the

insect progresses and more obstacles (walls and harmful

stimuli) are avoided. The behaviour in (a) and (b) is

reflected by the plot in Fig. 7c which shows the average

Fig. 6 Netlogo’s world-

interface. a Neural circuits.

b The simulated insect

environment

Table 1 Netlogo-ticks/second simulating up to four virtual insects

simultaneously

Number of insects Average ticks per

second (tps)

1 10,000

2 6800

3 4000

4 3200
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number of collisions with obstacles (black and red patches)

per thousand iterations. The peak at the beginning of the

plot shows the highest measured number of collisions in a

time slot (of thousand iterations) demonstrating the initial

inability of the insect to discriminate and react in response

to visual stimuli.

As shown in Fig. 7c, the artificial insect is able to move

almost collision free after about 15,000 simulation itera-

tions. However, this number depends on the parameters set

for the circuit neural dynamics and the STDP learning rule.

Table 2 illustrates the learning behaviour in terms of

number of iterations required for a collision-free move-

ment, using different values for the learning constants A?

and A- (see Eq. 2) to, respectively, potentiate or depress

the synaptic weights between the afferent and

motoneurons:

Table 2 demonstrates how changing one of the learning

equation parameters affects the overall learning behaviour

of the simulation. In a similar way, other STDP and neural

parameters can be manipulated in the proposed SNN

engine in order to experiment with the emergent dynamics.

4 Summary and conclusions

This work has presented (1) the implementation of a SNN

model in Netlogo and (2) the creation of a neural circuit

using the proposed SNN model applied to the control of an

agent in a simulated two-dimensional world.

With regard to the implementation of the SNN model, the

proposed SNN model was able to run four small neural cir-

cuits while demonstrating its ability to reproduce simple but

fundamental neural dynamics including: space and time

summation of incoming pulses, action potential with refrac-

tory period, synaptic plasticity (based on STDP) and synaptic

delays. However, the implemented SNN model neglects a

substantial part of the features of biological neurons and does

not include many of the kernel functions to simulate more

complex dynamics as done by other simulation tools. This is

expected, since the implemented model is aimed at being an

educational tool to introduce SNN dynamics and at providing

a SNN engine for fast prototyping of simple neural circuits

with small populations of neurons.

During the experiments, the implemented model was

able to support the monitoring and manipulation of every

single neuron, synapse and pulse variables in both interac-

tive (step by step) and continuous execution. Moreover, the

fact that the simulation was able to run at a speed of over

thousand iterations per second even with four circuits and

agents running simultaneously demonstrated that the pro-

posed model can be used to simulate interactions between

multiple agents controlled by spiking neural circuits at a

reasonable speed. Still, as shown in Table 1, when the

number of neurons and synapses increases, the performance

of the simulation drops significantly going from 15 neurons

(having 15 neurons per insect) at 10,000 tps to 60 neurons (4

insects) at 3200 tps. Thus, scalability is an issue. This is due

to the fact that Netlogo (version 5.2 at the time) runs as a

single thread process and thus multiple cores cannot be used

to improve the performance of the simulation. An alterna-

tive to overcome some of the performance limitations

would be using the Netlogo java API extension to imple-

ment parts of the model in native java code.

With regard to the application to the control of a virtual

agent, the artificial insect experiment demonstrated that an

agent controlled by SNN can adapt to its environment by

means of associative learning using STDP. The results in

Table 2 showed that different learning rates can be

achieved by manipulating the STDP equation parameters.

The presented model can be further developed by

modifying or implementing new kernels in order to

extended the biological characteristics and to support more

complex dynamics. However, any further development will

have to take into account the imposed limitations in terms

of performance and scalability.

Fig. 7 Trajectories and number of collisions during the simulation.

a Short trajectories at the beginning of the simulation. b Long

trajectory shows insect avoiding red and black patches. c Number of

collisions decreasing as simulation continues

Table 2 Behaviour with different learning-amplitude parameters A?

and A-

Symmetric LTP/LTD

amplitude change

Number of ticks (iterations)

before collision-free movement

0.01 19,000

0.02 15,000

0.03 9000

0.04 7000
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Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

See Table 3.
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Table 3 Parameters used in the implemented spiking neuron model

and the STDP learning rule

Parameters Neurons A, B, C, R, M,

H1, H2, Actuator_1

and Actuator_2

Resting potential -65

Firing threshold -55

Decay rate amplitude 0.5

Refractory potential -75 (-70 for neurons

H1 and H2)

Duration of absolute

refractory state

1

Weight increase amplitude Aþ 0.09

Weight decrease amplitude A� -0.09

Highest weight limit 9

Lowest weight limit 1

Positive learning window interval 55

Negative learning window interval -25

Learning window potentiation time

constant sþ
8

Learning window depression time

constant s�
15
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