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Abstract. The number of computational models in cardiac research has
grown over the last decades. Every year new models with different as-
sumptions appear in the literature dealing with differences in interspecies
cardiac properties. Generally, these new models update the physiological
knowledge using new equations which reflect better the molecular basis
of process. New equations require the fitting of parameters to previously
known experimental data or even, in some cases, simulated data. This
work studies and proposes a new method of parameter adjustment based
on Polynomial Chaos and Genetic Algorithm to find the best values for
the parameters upon changes in the formulation of ionic channels. It mi-
nimizes the search space and the computational cost combining it with
a Sensitivity Analysis. We use the analysis of different models of L-type
calcium channels to see that by reducing the number of parameters, the
quality of the Genetic Algorithm dramatically improves. In addition, we
test whether the use of the Polynomial Chaos Expansions improves the
process of the Genetic Algorithm search. We find that it reduces the Ge-
netic Algorithm execution in an order of 103 times in the case studied
here, maintaining the quality of the results. We conclude that polyno-
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mial chaos expansions can improve and reduce the cost of parameter
adjustment in the development of new models.

Keywords: Dimensional Reduction · Emulation · Genetic Algorithm.

1 Introduction

The first mathematical models that simulate the electrical activity of heart cells
use Hodgkin-Huxley [9] type equations to describe the ions channels present in
the cell membrane [2, 20]. This type of equations is well consolidated in whole-cell
models since it is the cornerstone of full-heart models which tries to reproduce
organ-scale behavior.

However, these models fail when cardiac cells do not present homogeneous
properties, such as differences in calcium concentrations due to intracellular cal-
cium waves, across the cell. Indeed, recent intracellular models have introduced
stochastic equations based on Markov Chains [13]. These Markov Chains formu-
lations reflect the structure of the ion channels and are critical to any intracellular
model. However, precisely because of its better physiological relation with reali-
ty, this new type of formulation has also found its way as average non-stochastic
equations useful for homogeneous whole-cell models [16]. For instance, studies
involving different mathematical models of cardiomyocytes have shown that the
ICaL current is better modeled when it is formulated using Markov Chains since
it may reproduce the different states that a single channel can assume [1, 3].

The use of the older models still remain useful but some studies [7, 18] show
an effort to update the old formulations in order to reproduce new experiments
and improve the biological meaning of the equations. In this update process, it
is common to merge different models due to the fact that each one might com-
plement the other. A very common issue that arises from this coupling process
is that they may generate inconsistent results since each model has different as-
sumptions in its conception. To correct these problems a parameter adjustment
has been an effective tool. However, the way how this process is done has not
been studied properly and presents a wide range of different scenarios.

One of the analyses that have been used in recent studies [8, 10, 11] to see
how the parameters are associated with the biological behavior is Uncertainty
Quantification (UQ). Since this analysis considers the existence of uncertain
measures associated with the studied object, it provides some methods to quan-
tify the impacts of uncertainty in these parameters values upon model outputs.
A technique used to perform this analysis is the polynomial chaos expansion
(PCE), which approximate model outputs through orthogonal polynomials in
terms of the uncertain model inputs[19].

Therefore, the main objective of this paper is to study and propose a sys-
tematic process to merge different ionic models involving parameter adjustment
based on polynomial chaos expansion and genetic algorithm.
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2 Methods

2.1 Modeling the L-type Calcium Current. The Pandit-Mahajan
Baseline Model

We take the rat ventricular electrophysiological model developed by Pandit et
al.[14] as the structural model we are going to use. The original Pandit formu-
lations models calcium, sodium and potassium channels to reproduce the action
potential of the rat’s ventricle. The calcium current entering the cell via thousand
of L-type calcium channels ICaL is written in terms of the Equation (1).

ICaL = gCaLd

[(
0.9 +

Cainact
10.0

)
f11 +

(
0.1− Cainact

10.0

)
f12

]
(V − ECaL) (1)

where the parameter gCaL is the maximum conductivity, d is associated with
gating activation, f11,f12 and Cainact are parameters associated with the gating
inactivation, V is the transmembrane potential and ECaL is the Nernst potential
associated with the Ca2+ ions1.

The above equation fits the experimental average calcium entering into the
cell due to thousands of L-type calcium channels. It does not take into account,
however, the typical structure of the L-type calcium channel. We take as a ty-
pical benchmark of any model development the ability to replace the Pandit
formulation based on Hodgkin-Huxley approach with a more detailed averaged
formulation of Markovian states. We take the formulation for the L-type Ca2+

as a Markov Chain developed by Mahajan et al. for rabbit which reads

ICaL = gCaLOM (V − ECaL) (2)

where OM is the state of the Mahajan Markov Chain that is associated with the
channel open state. The model of the LCC has two relevant closed states and
two inactivated, besides a single open state. As can be seen, the new formulation
represents a single replacement in the usage of the gating formulations to the
Markov Chain formulations2.

Given that the original models were developed to simulate the electrophysi-
ology of different animals, a parameter adjustment is necessary to make the two
parts of the coupled model compatible. Figure 1 shows the difference between
the original Pandit ICaL and Action Potential (AP) curves and the same curves
where the Mahajan model of LCC has been introduced without any parameter
adjustment (we will call this model the Pandit-Mahajan baseline). As can be
seen in Figure 1, the new ICaL current was too small with respect to the Pan-
dit original values. Thereby, this difference ends up influencing the main model
values, as shown by the AP curves.

1 For more details about the original Pandit ICaL equation, see Pandit et al.[14].
2 For more details about the transition rates between LCC rates and its dependence

with voltage and calcium, see Mahajan et al.[13].



4 N. Gustavo Montes et al.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  50  100  150  200  250

I C
aL

 (
n
A

)

Time(ms)

PANDIT
PM

(a)

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0  50  100  150  200  250

V
(m

V
)

Time(ms)

PANDIT
PM

(b)

Fig. 1. Comparison of the ICaL (a) and AP (b) curves of the original Pandit model
(PANDIT) with the ICaL and AP curves generated after Pandit-Mahajan (PM) cou-
pling.

In order to describe the ICaL curve we will use the “Time to Peak”, which
is the time that the current take from the beginning of the channels opening
up to the moment when it reaches the minimum value; “Peak Value”, which is
the minimum value that the current reaches; and “Time to Decay”, which is the
time that the current take from the minimum value up to the channels close.
The Pandit model has values of “Time to Peak”, “Peak Value” and “Time to
Decay” of 6.86ms, −0.97nA and 38.77ms, respectively. While Pandit-Mahajan
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baseline model (without any adjustment) has 3.04ms, −0.13nA and 3.55ms.
So, analyzing these features of the two model, Pandit and the baseline Pandit-
Mahajan, it is possible to conclude that a parameter adjustment is necessary.

It is clear now the aim of our work: we want to obtain a reliable Pandit-
Mahajan model which reproduces the results of the rat ventricle (Pandit) using
the formulation of the LCC obtained in the study of the physiology of the rabbit.

The LCC Markov Chain from Mahajan has a total of seven states and twenty
transition rates. However, a considerable number of these rates is a combination
of others. So, in the parameter fitting process, those composed rates was not
considered. After that, eight transition rates - k1, k2, k

′

1, k
′

2, r1, r2, s1 and s
′

1

- and the parameter τpo (time constant of activation associated with the α and
β transition rates) together with the Pandit’s maximum conductance of ICaL

current - gCaL - were considered in this study.

The parameter adjustment process may be done using a Genetic Algorithm.
However, a minimization problem solved by a genetic algorithm may become
computationally expensive depending on the dimension of the search space. In
the case of parameter adjustment from the baseline Pandit-Mahajan model, the
GA would have to find a set of ten values for the parameters so that those values
should reproduce the original Pandit ICaL current values. In this search space,
it might be difficult to find the optimal values.

To reduce the GA search space, Sensitivity Analysis and Dimensional Re-
duction techniques were used to determinate how the parameters of the coupled
model influence the main ICaL characteristics. With this analysis, it is possible
to choose the most relevant parameters in order to adjust the new ICaL current.
Furthermore, the search process has to simulate the mathematical model several
times and, due to it, the computational cost associated with this process be-
comes expensive. Trying to minimize it, the use of Emulations [10, 11] based on
Polynomial Chaos Expansion was tested in order to replace the mathematical
model in the evaluation process of the GA.

2.2 Polynomial Chaos Expansion (PCE) and Emulations

Emulations, also known as Metamodels in the literature, has a very important
role in the study involving complex systems models [15]. This technique aims
to decrease the complexity of the mathematical models caused by the over-
parametrization but maintaining the results as expected. With this process, the
new model loses a few phenomenological information but, on a high scale, it is
still able to reproduce the expected results and to help on the decision-making
process.

In studies involving the Uncertainty Quantification, a common technique to
analyze the insertion of uncertainty in deterministic models is the Polynomial
Chaos Expansion (PCE). In this technique, an orthogonal polynomial is used to
approximate some outputs of a forward model [19]. As a polynomial evaluation
is computationally fast, this approach becomes very useful when the original
model has a high computational cost to be simulated. Then, some process where
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a lot of simulations are required, such as Sensitivity Analysis and Parameter
fitting, become more practical to be performed.

Considering a vector ξ = (ξ1, ξ2, . . . , ξN )T of model inputs composed by inde-
pendent random variables and assume that the quantity of interest y is written
in terms of these variables, it is possible to express this quantity through an
infinite polynomial chaos expansion [12]. In practical applications, this quantity
of interest can be approximated by a finite expansion obtained through a linear
combination of the elements from the polynomial chaos basis:

ȳ(ξ) =

P∑
i=1

biΦi(ξ), (3)

where bi are the unknown coefficients and Φi are orthogonal polynomial functions
in terms of the inputs. This polynomial chaos expansion with N inputs and order

d has P terms, where P = (N+d)!
N !d! .

Defined the approximation for the quantity of interest, as in Equation (3),
it is necessary to determine the coefficients bi that define the polynomial in
terms of the inputs. To this end, a non-intrusive approach named Probabilistic
Collocation method is used, where a weighted residual formulation in the random
space is defined [17] and the polynomial expansion needs to be equal to the model
evaluation in a number of collocation points, which are samples of the random
inputs. The result is a linear system in terms of the bi coefficients, then, the
polynomial coefficients that approximate the quantity of interest are found by
solving this system.

2.3 Sensitivity Analysis

In complex systems modeled as differential equations, like a Markov Chain with a
large number of states and transitions between them, it is very common to appear
a high number of parameters. In these cases, it is important to understand how
each parameter influences the entire system.

A Sensitivity Analysis of the ten parameters associated in the ICaL current
from the Pandit-Mahajan model was done in order to determinate which para-
meters have more influence on the main characteristics of the ICaL curve. To do
this analysis, the ChaosPy library [6] implemented in Python was used.

The ChaosPy library has methods to quantify the uncertainty combining
the use of the Monte Carlo method and also the PCE. To determine the PCE
coefficients, it provides the Probabilistic Collocation method and the Pseudo-
spectral Projection method.

The ten parameters, τpo, k1, k2, k
′

1, k
′

2, r1, r2, s1, s2 and gCaL, were analyzed
and the results showed that three of them have more influence on the studied
ICaL curve. Figure 2 shows these results.
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Fig. 2. The Sobol 1st order sensitivity index4of the parameters associated with the
main ICaL curve characteristics: the Time to Peak, the Peak Value and the Time to
Decay.

As can be seen in Figure 2, the parameters r1, r2 and gCaL have high influence
on the main ICaL current from the Pandit-Mahajan model. So, considering these
results, the search space of the Genetic Algorithm might be reduced from ten
parameters to only three.

2.4 Parameter Adjustment Using Genetic Algorithm

A parameter adjustment using a Genetic Algorithm was used to adjust the
LCC Markov Chain parameters so that the ICaL curve presented in Pandit
original model remains unaltered in the new Pandit-Mahajan model. The GA
was implemented using the “Simple Genetic Algorithm” provided by Pagmo
C++ library [4].

Two important processes when defining a Genetic Algorithm are the choices
of the variable of search (Genes) and the objective function (Fitness function). In
order to evaluate the effectiveness of the Sensitivity Analysis done, the variables
of the search were defined in two ways: the first with the ten parameters and, the
second, with only the three parameters highlighted by the Sensitivity Analysis.
The second process, the definition of the Fitness function, used the main charac-
teristics of the ICaL curve. In this process, two methods were tested to evaluate
the objective function: the first one was considering the Pandit-Mahajan mathe-
matical model simulations and the second was considering the emulations done

4 The 1st order sensitivity index quantifies the portion that an input parameter con-
tributes directly to the total variance of the quantity of interest, for more details see
Eck et al.[5].
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by the PCE generated through the ChaosPy library. Mathematically, this pro-
cess can be seen as a minimization problem with objective functions presented
by the Equations (4) and (5) for the approach using the simulations of the model
and the emulations using the PCE, respectively.

F (v, ICaLp
) =

1

|TimeToPeak(ICaLp
)|
|TimeToPeak(v)− TimeToPeak(ICaLp

)|

+
1

|PeakV alue(ICaLp
)|
|PeakV alue(v)− PeakV alue(ICaLp)|

+
1

|TimeToDecay(ICaLp)|
|TimeToDecay(v)− TimeToDecay(ICaLp

)|

(4)

where v is the ICaL curve generated by the Pandit-Mahajan simulation to be
evaluated by the function and ICaLp

is the original curve of the Pandit model.

F (ξ, ICaLp
) =

1

|TimeToPeak(ICaLp)|
|PTTP (ξ)− TimeToPeak(ICaLp)|

+
1

|PeakV alue(ICaLp
)|
|PPV (ξ)− PeakV alue(ICaLp

)|

+
1

|TimeToDecay(ICaLp
)|
|PTTD(ξ)− TimeToDecay(ICaLp

)|

(5)

where ξ are the set o parameters to be evaluated by the function, P•(ξ) are the
4th order PCE that approximate the “Time To Peak” (•TTP ), “Peak Value”
(•PV ) and the “Time To Decay” (•TTD) features and ICaLp

is the original curve
of the Pandit model.

The chromosome C of the genetic algorithm is defined as C = {cp ∈ R|0.1 <
cp < 5.0} where cp is the multiplier for the specific parameter p. All Genetic Al-
gorithm executions were done with the standard setup from the Pagmo library
except the use of the crossover strategy. In this study was used the Simulated Bi-
nary Crossover (“sbx”) strategy, also provided by Pagmo library. All executions
used 15 generations and the population was composed of 150 individuals.

3 Results

The main objective of this study is to evaluate a new process of parameter ad-
justment based on uncertainty quantification techniques and genetic algorithm.

After the use of the methods described in Section 2, two classes of results
were generated. The first one using the simulations of the mathematical model
into the GA evaluation and, the second one, using the emulations done by the
Polynomial Chaos Expansions obtained using the ChaosPy library. Figure 3
shows the results obtained in the different tests.
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Fig. 3. Results obtained by the GA in the cases of study. The descriptive measures
(minimum, first quartile, median, third quartile and maximum values) of the multiplier
cp result adjusting 10 parameters using the mathematical model simulations (a) and the
PCE emulations (b); the descriptive measures of the the multiplier cp result adjusting
3 parameters using the mathematical model simulations (c) and PCE emulations (d);
the descriptive measures for the best Fitness found considering the simulations of the
mathematical model (e) and emulations using the PCE (f) for 10 and 3 parameters.

The best results obtained by the GA using the simulation of Pandit-Mahajan
model and the emulation by the PCE are presented in Tables 1 and 2, respec-
tively.
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Table 1. The parameter values from the Original Model presented with the values en-
countered by the best execution of the Genetic Algorithm considering the mathematical
model simulation using both the 10 parameters and the 3 parameters.

Parameter Mahajan et al. [13] 10 parameters 3 parameters

τpo 1 1.434 1
k1 0.03 0.015 0.03
k2 1.04 10−4 3.88 10−4 1.036 10−4

k
′
1 4.13 10−3 4.361 10−3 4.13 10−3

k
′
2 2.24 10−3 7.092 10−3 2.24 10−3

r1 0.3 1.247 1.482
r2 3 0.667 0.914
s1 0.02 0.023 0.02

s
′
1 1.95 10−3 6.671 10−4 1.95 10−3

gCaL 0.031 0.052 0.064

Table 2. The parameter values from the Original Model presented with the values
encountered by the best execution of the Genetic Algorithm considering the mathe-
matical model emulation done with the PCE using both the 10 parameters and the 3
parameters.

Parameter Mahajan et al. [13] 10 parameters 3 parameters

τpo 1 1.232 1
k1 0.03 0.023 0.03
k2 1.036 10−4 4.09 10−4 1.036 10−4

k
′
1 4.13 10−3 0.014 4.13 10−3

k
′
2 2.24 10−3 9.448 10−3 2.24 10−3

r1 0.3 0.988 1.309
r2 3 1.279 1.731
s1 0.02 0.043 0.02

s
′
1 1.95 10−3 7.939 10−4 1.95 10−3

gCaL 0.031 0.115 0.101

Figure 4 shows the ICaL (4(a)), AP (4(b)) and [Ca]i (4(c)) curves of the
proposed Pandit-Mahajan model after the parameter adjustment using the 3
parameter results considering both simulations of the model (PM-SIM) and e-
mulation of the PCE (PM-EMU) in comparison with the original Pandit model.
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Fig. 4. ICaL current (a), Action Potential (b) and [Ca]i (c) curves generated by Pandit
original model (PANDIT) compared with the new Pandit-Mahajan model after the best
parameter adjustment using the simulation of the model (PM-SIM) or the emulation
of the PCE (PM-EMU) into the Genetic Algorithm search process.
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As can be seen, the GA adjustment was able to fit the new model formulations
in order to maintain the main characteristics of the ICaL curve as presented in
the original model using both simulation and emulation techniques.

Since the ICaL curve was well reproduced, the main electrophysiology vari-
ables, the Action Potential (AP) and the Intracellular Calcium Concentration
([Ca]i), also were well reproduced.

3.1 Dimensional Reduction

The first method studied was the Dimensional Reduction. Based on the Sensi-
tivity Analysis done, it was possible to notice that three parameters have more
influence on the main features of the ICaL curve.

The GA was executed 10 times with the search space of 10 parameters and
10 times with search space of 3 parameters. The values found by the GA in both
cases, using the simulation of the model or the emulation by the PCE, are shown
in the Figures 3(a), 3(c) and in Figures 3(b) and 3(d), respectively.

As can be seen in Figures 3(e) and 3(f), the reduction in the search space
dimension of the GA generated an increase in the quality of the results obtained.

3.2 Emulations

An Emulator based on PCE generated by ChaosPy library was tested instead
of the mathematical model in the GA Fitness evaluation. Figures 3(b) and 3(d)
show the results obtained by the GA using the Emulation technique.

When compared with the GA results using the mathematical model (Figures
3(b) and 3(d)), the use of the Emulation obtained satisfactory results. The values
found by GA were similar using both simulations of the mathematical model
or using emulations. Furthermore, even changing the evaluation method, the
obtained Fitness values were similar using both methods as can be seen in Figures
3(e) and 3(f).

The great advantage of using the Emulation technique is associated with the
computational cost. The same results considering both techniques was obtained
by the GA but the search process using the simulations as evaluation function
took approximately 90 minutes to find the results, whereas using the emulation
it took less than 1 second. Considering that ChaosPy took around of 30 minutes
to generate the PCE, it is possible to conclude that the use of the Emulation
technique speeds up the problem solution at least in 3 fold.

4 Conclusions and Discussions

The coupling of different models or even an update of an existing model is an
important tool to develop new electrophysiological studies. However, this pro-
cess involves different procedures and techniques that imply a set of parameter
adjustments, which may determinate the quality of the results.
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In this paper, we presented a new method based on the combination of Poly-
nomial Chaos expansion and a Genetic Algorithm to optimize the efficiency and
the efficacy of the process of coupling two different models. Furthermore, a di-
mensional reduction in the Genetic Algorithm search space was done based on
the Sensitivity Analysis, which showed that for the Pandit-Mahajan specific cou-
pling process, only three parameters have the biggest influence in the parameter
estimations needed to model ICaL curve. This result motivated an adjustment
involving only these three parameters instead of the ten previously adjusted.
This reduction showed to be a good option since it generated smaller Fitness
values when adjusted with the Genetic Algorithm. This reduction may be ex-
plained due to the fact that this dimensional reduction in the Genetic Algorithm
search space, considering now only the more important parameters, facilitated
the process to find the optimal values.

Another important point to highlight is that, considering all the ten pa-
rameters, the Genetic Algorithm results did not converge to a small range of
values. The results of the parameters multipliers cp assumed different values
in each algorithm execution. This behavior is not interesting since the results
are associated with parameters that, in some cases, are related to the biological
characteristics of the model. So this variation may cause a decrease in confidence
of its value. This unwanted behavior did not occur in the Genetic Algorithm
considering the Sensitivity Analysis. With the combined techniques, the results
had converged to a small range of values and, with this behavior, they may be
more trustworthy.

The Fitness evaluation process in a Genetic Algorithm can be a computa-
tionally expensive process, mainly when this process involves a simulation of a
mathematical model. In this paper, a method using an Emulator based in Poly-
nomial Chaos Expansions was tested instead of the mathematical model in order
to replace a complex model simulation for a single polynomial evaluation and,
with this, reduce the cost associated with this process.

The Polynomial Chaos Expansions method was more effective than the Ge-
netic Algorithm since it was able to obtain the roughly the same results, however,
reducing the Genetic Algorithm search process from 90 minutes to less than 1
second in the configuration used in this paper. If we consider a larger number of
generations or a bigger population size of the Genetic Algorithm, the speed up
will be highly increased.

In conclusion, in this paper, we employ a parameter adjustment process com-
bining Polynomial Chaos Expansions and Genetic Algorithm to couple two mo-
dels: Pandit and Mahajan into a new combined Pandit-Mahajan model. The
procedure showed to be effective to facilitate the coupling of the two models
since it arrives in excellent agreement with the original model.

References

1. Armstrong, C.M., Bezanilla, F.: Inactivation of the sodium channel. ii. gating cur-
rent experiments. The Journal of general physiology 70(5), 567–590 (1977)



14 N. Gustavo Montes et al.

2. Beeler, G.W., Reuter, H.: Reconstruction of the action potential of ventricular
myocardial fibres. The Journal of physiology 268(1), 177–210 (1977)

3. Bezanilla, F., Armstrong, C.M.: Inactivation of the sodium channel. i. sodium
current experiments. The Journal of general physiology 70(5), 549 (1977)

4. Biscani, F., Izzo, D.: esa/pagmo2: pagmo 2.9 (Aug 2018)
5. Eck, V.G., Donders, W.P., Sturdy, J., Feinberg, J., Delhaas, T., Hellevik, L.R.,

Huberts, W.: A guide to uncertainty quantification and sensitivity analysis for car-
diovascular applications. International journal for numerical methods in biomedical
engineering 32(8), e02755 (2016)

6. Feinberg, J., Langtangen, H.P.: Chaospy: An open source tool for designing me-
thods of uncertainty quantification. Journal of Computational Science 11, 46–57
(2015)
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