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Abstract

The muscular layer of the uterus (myometrium) undergoes profound changes in global

excitability prior to parturition. Here, a mathematical model of the myocyte network

is developed to investigate the hypothesis that spatial heterogeneity is essential to the

transition from local to global excitation which the myometrium undergoes just prior to

birth. Each myometrial smooth muscle cell is represented by an element with FitzHugh-

Nagumo dynamics. The cells are coupled through resistors that represent gap junctions.

Spatial heterogeneity is introduced by means of stochastic variation in coupling strengths,

with parameters derived from physiological data. Numerical simulations indicate that even

modest increases in the heterogeneity of the system can amplify the ability of locally applied

stimuli to elicit global excitation. Moreover, in networks driven by a pacemaker cell, global

oscillations of excitation are impeded in fully connected and strongly coupled networks. The

ability of a locally stimulated cell or pacemaker cell to excite the network is shown to be

strongly dependent in the local spatial correlation structure of the couplings. In summary,

spatial heterogeneity is a key factor in enhancing and modulating global excitability.

∗To whom correspondence should be addressed. Email: R.E.Sheldon@warwick.ac.uk
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1 Introduction

The myometrium is the muscular layer that constitutes the bulk of the uterine wall. It is

a syncytium of interconnected smooth muscle cells, forming an excitable medium [1], i.e. a

nonlinear dynamical system that can propagate signals over long distances without damping.

In the myometrium, these propagating signals trigger phasic contractions [2]. The behaviour of

the myometrium as an excitable medium is thought to be influenced by the spatial variations

in the excitability of individual muscle cells as well as the strength of their interconnections [3].

The modulation of global excitation by network heterogeneity may play an important role in

the myometrium during pregnancy. Sufficient coupling is needed for excitation to spread, but

this coupling need not be uniform, or even exist between all cells. The aim of this paper is

to examine how spatial heterogeneity, in particular local variations in cell connectivity, affects

global excitability. Furthermore, we study the ability of pacemaker cells to drive the network

as a function of its spatial heterogeneity.

In the rodent (as in most mammals), the myometrium consists of an inner circular layer and an

outer longitudinal layer of smooth muscle cells [4]. In humans these layers are less distinct [5].

Through most of pregnancy, the myometrium remains in a predominantly quiescent state as

the fœtus develops [6]. However, in the days leading up to parturition, contractile activity

in the myometrium undergoes major changes which prepare the uterus for labour [6]. This

activation phase involves molecular changes that lead to an increase in contraction frequency,

as compared with mid-gestation [7]. A key characteristic of this phase is a profound change in

the connectivity between the myometrial smooth muscle cells.

If a stimulus is applied to a smooth muscle cell, its membrane potential undergoes a depolari-

sation before eventually returning to the quiescent resting value. An excitable cell exhibits an

all-or-nothing response: a cell either responds with a full excursion of the membrane potential,

or barely at all. In particular, when the stimulus exceeds an excitability threshold, the response

2



is an action potential whose magnitude is independent of the size of the (suprathreshold) stim-

ulus. A consequence of this all-or-nothing behaviour is that a stimulus of sufficient amplitude

can be reliably propagated across the network.

Pacemaker cells, by contrast, do not require an external stimulus, but exhibit periodic excita-

tions that drive neighbouring non-pacemaker cells. The presence of specialised pacemaker cells

in myometrial tissue is much disputed [8–11]. If present, it is likely that the pacemaker cells are

not anatomically distinct from non-pacemaker cells and have no fixed location in the uterus [12].

Rather, they would occur dispersed within the matrix of non-pacemaker cells. Therefore the

cells can only be recognised through patterns of electrical activity: a slow depolarisation of

the smooth muscle membrane which results in the generation of an action potential [13]. The

oscillation frequency of a pacemaker cell dictates the rate of uterine contractions.

In order to generate action potentials, a myometrial cell maintains transmembrane gradients

of several ionic species by means of active transport across the cell membrane. In humans,

the action potential is initiated by an inward, depolarising current carried by calcium ions [2].

Post-excitation, the cells enter a refractory period, during which they are temporarily unable to

become excited [14]. Electrical coupling between myometrial smooth muscle cells is maintained

by inter-cellular channels through which ions and certain metabolites can pass from one cell to

another. Each channel consists of two connexons, one contributed by each of the communicating

cells; furthermore, each connexon is a complex of six connexin proteins [15]. A gap junction is a

cluster of such channels joining two cells electrically. Myometrial gap junctions vary in number

over the course of gestation; in fact, an increase in the number of gap junctions in myometrial

tissue is indicative of the onset of labour [1]. Moreover, the precise nature of the conditions

that stimulate the expression of gap junctions is of considerable clinical importance and an

understanding of these conditions may ultimately aid early diagnosis and improve management

of preterm labour [16].

Heterogeneity has long been known to be a factor in the spatial patterns of activation in

excitable systems [17]. In particular, electrical heterogeneities can play a role in cardiac ar-

rhythmias and cause a decrease in propagation velocity through the tissue. The propagation
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of excitation in spatially extended systems through spiral waveforms has been well-studied

(e.g. [18, 19]). Here we focus on a question which has received much less attention: whether

spatial heterogeneity in connectivity is sufficient to modulate global excitability. We employ

a mathematical model to investigate how the global excitation of the myometrium is affected

by the spatial heterogeneity of the system. Benson et al. [20] analysed a heterogeneously cou-

pled model which is based on FitzHugh-Nagumo dynamics, but this was a continuum-model

in which the coupling between cells was not represented explicitly. Spatial heterogeneity was

found to assist the transition between quiescence and excitability. However, heterogeneity in

coupling alone was not observed to produce synchronous activity. Following these authors, we

use the FitzHugh-Nagumo model [21, 22] and introduce heterogeneity by generating stochastic

coupling structures based on several statistical distributions. These include empirical distribu-

tions obtained from experiments performed on myometrial cells taken from mice at the 15th

and 18th day of pregnancy (i.e. towards the end of gestation). In addition, we investigate how

spatial heterogeneity of the intercellular connections modulates the ability of a pacemaker cell

to drive the network.

2 Methods

Both in silico and in vitro methods were employed. Myometrial tissue was simulated in a

mathematical network model to determine the effect of spatial variations of coupling strengths

on the spread of excitation. Since coupling depends on cell capacitance, as explained below,

cell capacitance values were taken from pregnant mouse myometrium to define a statistical

distribution for coupling values, which was used to construct an asymmetrically coupled model.

Furthermore, data from pregnant mouse myometrial cells were used to simulate statistical

variation in resting membrane potential for each cell. These physiologically realistic spatial

statistics were also used to determine the efficacy of pacemaker cells.
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2.1 Experimental Methods

2.1.1 Electrophysiological measurements

Animals used were C57BL/6 mice which were time-mated (within a 2 hr period) to generate

pregnancies with an accurate gestational age. Mice were sacrificed by carbon dioxide inhalation

at gestation day 15 or 18, time points towards the end of pregnancy. Strips of myometrium from

the longitudinal layer (2 × 2 × 20 mm) were dissected from freshly isolated uteri in ice-cold

physiological saline. The strips were washed in Ca2+ and Mg2+ free HBSS (Fisher Scientific)

at 37◦C for 10, 20, and 30 minutes sequentially. This was followed by a 45-minute incubation

in HBSS containing Liberase TM (Roche) at a final concentration of 0.13 units/ml. Digestion

was terminated by several dilutions with fresh HBSS. Cells were dispersed by slow trituration

through a wide-bore fire polished glass pipette in HBSS solution. Single myometrial cells were

filtered through a 200 µm gauze and stored in HBSS for use within 6 hr.

The cell membrane was perforated using the antibiotic amphotericin B (600 µg/ml) [23]. Cell

capacitance was measured in the enzymatically isolated smooth muscle cells using the mem-

brane test facility of the Axopatch 700B amplifier (Axon Instruments). Repetitive square

voltage pulses of ∆Vm = 10 mV were applied from the holding potential of −60 mV and the

current response was measured. The integral of the current as a function of time over the

decay phase equals the unloaded charge Qc which is related to the step change in voltage by

Qc = Cm∆Vm, whence Cm can be calculated. Table SI 1 lists the cell capacitance data obtained

in our experiments.

Transmembrane potentials were recorded with an amplifier (Axopatch 700B; Axon Instruments)

and a Digidata 1440a computer interface running pCLAMP 10.2 software (Molecular Devices,

Sunnyvale, CA, USA). Resting membrane potential values were taken as the mean potential

(mV) for the 5-second period immediately after an action potential has occurred.
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2.1.2 Data analysis

For the 18-day cell capacitance data, a distribution was fitted as follows. The coefficient of

variation was calculated as ξ1 = σ18/µ18, where µ and σ are the mean and standard deviation

of the experimental data, respectively. The data were normalised by the average value, giving

a normalised mean of 1 and a normalised standard deviation of ξ1. A log-normal distribution

can be characterised by two parameters λ and τ such that the mean is equal to exp(λ+ τ2/2)

and the variance equals exp{2λ + τ2}(exp{τ2 − 1}). These parameters satisfy the following

system:

1 = eλ+
τ2

2 , (1)

ξ21 = e2λ+τ
2
(eτ

2 − 1).

The non-dimensional cell capacitance for 18-day pregnant mouse data was found to be dis-

tributed as eZ where Z follows a normal distribution with mean −0.03551 and standard devi-

ation 0.2665.

The 15-day data were analysed in a similar fashion. The coefficient of variation was defined as

ξ2 = σ15/µ15 using the mean and standard deviation of the experimental data. However, the

data were normalised by the 18-day mean µ18, with normalised mean α = µ15/µ18. Hence

α = eλ+
τ2

2 , (2)

ξ22 = e2λ+τ
2
(eτ

2 − 1).

The non-dimensional cell capacitance for 15-day pregnant mouse data was found to be dis-

tributed as eZ where Z follows a normal distribution with mean −0.2114 and standard devia-

tion 0.3073.
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2.2 Myometrial network model

The myometrial network model consists of excitable elements interconnected by resistors rep-

resenting gap junctions. Heterogeneity is introduced in the form of random variations in the

strength of the cell-to-cell couplings. We use various statistical models to generate the networks,

including two based on cell population statistics taken from the mice data.

2.2.1 Cell model

The Hodgkin-Huxley model of electrogenic cell activity, proposed in 1952, forms the basis

for the study of excitable systems [14, 24–27]. While the Hodgkin-Huxley model has four

state variables, FitzHugh pointed out that the essential dynamical properties are captured

by a two-dimensional simplified model [21], for which Nagumo proposed an electric analogue

circuit [22]. The simplified model is an excitation-relaxation oscillator with a fast (“excitation”)

state variable v that corresponds to the cell’s membrane potential and a slow (“recovery”)

variable w that corresponds to gating kinetics which repolarise the excited cell. The following

ordinary differential equations describe this two-variable model:

d

dt
v(t) =

1

ε
Av(t) (1− v(t))(v(t)− α)− w(t)− w0 + I, (3a)

d

dt
w(t) = v(t)− γw(t)− v0, (3b)

where I is the input current and A, α, γ, w0, v0, and ε are positive parameters. The values

shown in Table 1 were used in the simulations presented in Sections 3.1 – 3.7, with the exception

of ε which was scaled according to cell capacitance in Section 3.6.

The equations were solved using the NDSolve function in Mathematica, which uses an LSODA

(Livermore Solver for Ordinary Differential Equations) approach. Results were numerically

stable under variation in step size.

The behaviour of an isolated cell with the input I = 0 is shown in a phase-space diagram

(Figure 1a). Whereas the null isocline of w is a straight line, the null isocline of v is a cubic
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polynomial with an unstable branch in the middle, indicated as a dashed line. In the region left

of this unstable branch, the phase point tends towards the left stable branch and ultimately

towards the intersection of the null isoclines, which forms a stable stationary point. To the

right of the unstable branch, the phase point tends rapidly towards the right stable branch,

where the slow dynamics of w will drive it upwards until the branch point is attained. The

rapid dynamics of v subsequently drives the phase point back to the left stable branch.

Excitation corresponds to an excursion along the right stable branch. To reach this branch

from the stationary point, a perturbation (∆v) has to be applied on v. If this perturbation

is insufficient to move the phase point beyond the unstable branch, the phase point rapidly

relaxes back to the equilibrium (Figure 1b), whereas sufficiently large perturbations trigger

a substantial response (Figure 1c). The unstable branch of the null isocline v̇(t) = 0 thus

represents a threshold for excitation.

2.2.2 Lattice model

The individual excitable cells were coupled together through resistors into an n × n lattice,

as illustrated in Figure 2a. The lattice was modelled with closed boundary conditions. The

resistors represent the gap junctions between any two adjacent cells. The equivalent resistance

of the gap junction can be calculated on the basis of the properties of the individual connexon

channels. Let the individual connexon have a resistance ri (Figure 2b). Suppose that the gap

junction between a given pair of cells consists of n connexons. Since the connexons conduct

in parallel, Kirchoff’s law for parallel resistors determines the total resistance R of the gap

junction (Figure 2c):

1

R
=

1

r1
+

1

r2
+ ...+

1

rn
. (4)

If the connexons have equivalent resistance, ri ≡ r, and R = r/n.
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2.2.3 Coupling constants

A coupling constant K is assigned to each gap junction and defined as follows. The cell

membrane is modelled as a capacitor in parallel with a resistor, as indicated in Figure 2d.

Let Qi denote the membrane charge of cell i, Ci the cell capacitance and Vi the membrane

potential. These quantities are related by

dQi
dt

= Ci
dVi
dt

. (5)

The gap junctional current between two cells i and j is given by (Vj − Vi)/Rij . Define the

coupling constant between cells i and j as Kij = (CiRij)
−1 and consider a cell connected to

four other cells in a rectangular grid, as shown in Figure 2d. The gap junctional current for

the central cell is a sum of four gap junctional currents:

1

Ri+1,j
(Vi+1,j − Vi,j) +

1

Ri,j+1
(Vi,j+1 − Vi,j) +

1

Ri−1,j
(Vi−1,j − Vi,j) +

1

Ri,j−1
(Vi,j−1 − Vi,j)

where (i, j) denotes the location of the cell on the grid. Hence the voltage dynamics for cell

(i, j) is given by

d

dt
V =

1

Ci,jRi+1,j
(Vi+1,j − Vi,j) +

1

Ci,jRi,j+1
(Vi,j+1 − Vi,j) +

1

Ci,jRi−1,j
(Vi−1,j − Vi,j)

+
1

Ci,jRi,j−1
(Vi,j−1 − Vi,j) +

ICh

Ci,j
(6)

where ICh is the total current carried by the ion channels of cell (i, j). The coupling values

between any two adjacent cells are as follows:

Ki+1,j =
1

Ci,jRi+1,j
, Ki,j+1 =

1

Ci,jRi,j+1
, Ki−1,j =

1

Ci,jRi−1,j
, Ki,j−1 =

1

Ci,jRi,j−1
. (7)

The coupling value is rendered dimensionless in accordance with the scaled equations for dy-

namics of the cell network (Equations (3a) and (3b)). As defined here, K is a rate constant.

Dimensionless time t in the FitzHugh-Nagumo model is defined by t = R1τ/D, where D is

the damping coefficient that captures the inertia of the system induced by the gating kinetics,
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as shown by FitzHugh [21], dimensional time is represented by τ , and R1 is the passive resis-

tance of the non-linear current device of the circuit, represented as a tunnel diode by Nagumo

et al. [22]. Dimensionless coupling is defined as κ = D/R1K. The dimensionless equations

governing the dynamics of the cell in the (i, j)-th position are as follows:

d

dt
vi,j(t) = Ii,j +

1

ε
Avi,j(t)(1− vi,j(t))(vi,j(t)− α)− wi,j(t)− w0 + κi−1,j(vi−1,j(t)− vi,j(t))

+ κi+1,j(vi+1,j(t)− vi,j(t)) + κi,j−1(vi,j−1(t)− vi,j(t)) + κi,j+1(vi,j+1(t)− vi,j(t)),

(8a)

d

dt
wi,j(t) = vi,j(t)− γwi,j − v0 . (8b)

Here Ii,j is the input current applied to cell (i, j). To render the remaining parameters di-

mensionless, define ε = R2
1Ci,j/D where R1 is the passive resistance of the nonlinear element,

Ci,j is the capacitance of cell (i, j) and D is the damping coefficient. The quantities R and D

are incorporated into the excitable element depicted in Figure 2d. The other parameters were

scaled in accordance with the derivation given by Keener and Sneyd [28], as detailed in the

Appendix.

2.2.4 Initial conditions and activation clusters

The initial conditions for each cell correspond to the resting membrane potential and are given

by the real solution to the following simultaneous equations:

wi,j(0) = Avi,j(0)(1− vi,j(0))(vi,j(0)− α)− w0, (9)

and

wi,j(0) = (vi,j(0)− v0) /γ . (10)

A perturbation ∆v, representing a short-lasting influx of charge, is applied to the cell at the

centre of the lattice, displacing it from its stationary point. The cells that become excited as a

consequence of this initial perturbation constitute an activation cluster. The ratio of number
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of cells in the cluster to the total number of cells in the simulated lattice is used as a measure

of the strength of activation.

2.2.5 Spatial structuring

Both homogeneously coupled and heterogeneously coupled cell networks are considered. In

the spatially homogeneous case, all couplings are equal, i.e., κi,j = κ ∀(i, j) whereas in the

spatially heterogeneous case, the cell-cell couplings κij are allowed to vary with i, j. Two

further subcases can be distinguished: (i) symmetric coupling, i.e. κi,j = κj,i ∀(i, j) , and

(ii) asymmetric coupling, where κi,j 6= κj,i .

Symmetrical coupling — the Bernoulli Lattice To simulate symmetrical coupling, the

value κi,j = κj,i is determined probabilistically by

κi,j =


κ with probability p

0 with probability 1− p,
(11)

where the limiting case p = 1 represents spatial homogeneity. We refer to the lattice defined by

equation (11) as the Bernoulli Lattice. Heterogeneity in the Bernoulli Lattice is modulated by

varying the amount of connectivity in the lattice, expressed by the parameter p representing

the probability of a connection existing between any two given cells.

Symmetrical coupling — Uniformly distributed A second type of symmetrical hetero-

geneity is introduced using a lattice with connections drawn from uniform distributions. In par-

ticular, the intercellular couplings are modelled as independent uniform variates on [0.5, 10].

Spatial correlation in the coupling structure Distance to the stimulated cell is expressed

using the `1 (“city-block”) measure; Figure SI 1 labels cells according to their `1-distance to

the central cell on a 5 × 5 lattice. The correlation function Cr, where r is the `1-distance, is
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defined as follows:

Cr = 〈 〈(κ̄0 − ¯̄κ)(κ̄i − ¯̄κ)〉∀ i at r 〉simulated networks (12)

where ¯̄κ denotes the grand mean of coupling over the network and κ̄i is the mean coupling of

cell i.

Asymmetrical coupling — Cell capacitances Asymmetrical coupling is introduced by

allowing variation in cell capacitances (with symmetrical gap junctional conductances). A larger

cell has a larger capacitance, and as a result will be more weakly coupled to its neighbours since

Ki,j = (CiRi,j)
−1 will be smaller (Figure 2e). The model assumes that the cell capacitance

values are independently log-normally distributed; calculation of realistic parameter values is

detailed in Section 2.1.2. A resistance value is chosen from within a window of values that

permit global excitability.

The value of the scaled parameter ε is proportional to the capacitance of the cell. Accordingly

in stimulations using day 18 data, the value of ε is normalised by the modal point of the 18-day

distribution. Similarly, ε is normalised by the modal point of the 15-day distribution in day 15

simulations.

Variability in resting membrane potential A normal distribution was fit to the nor-

malised resting membrane potential data. The 18-day data serve as a reference point. The

non-dimensional resting membrane potential for 18-day pregnant data is normally distributed

with mean 1 and standard deviation 0.1615, whereas the non-dimensional resting membrane

potential for 15-day pregnant data is normally distributed with mean 1.046 and standard de-

viation 0.08737.

Equations (9) and (10) can be solved simultaneously to find an expression for the value of v

in the steady state. Retaining only linear terms we find that the scaled resting membrane

potential v̄ is proportional to v0 − γw0.

A value vi,j is sampled from the resting membrane potential distribution for each cell (i, j)

in the network. The dependent parameters γ and w0 are then multiplied by vi,j to introduce
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variability into the model. Introducing variability through the parameter v0 produces non-

sensical results.

Multiplying γ and w0 by vi,j alters the phase portrait for each cell. We therefore examine

the effect of the variability in resting membrane potential (and so gestation period) on the

minimum perturbation required to excite an isolated cell. Simulations were run with the only

asymmetry being the variation in resting membrane potential, and also with an asymmetry in

the cell capacitances. Relative cluster sizes were recorded for a range of coupling strengths and

initial perturbations with varying connectivity p.

An increase in variability in resting membrane potential is seen as pregnancy progresses. There-

fore, by assuming a linear relationship between day 15 and day 18 data, we extrapolate resting

membrane potential variability for time points outside this range to examine the trend of ex-

citability throughout pregnancy.

Pacemaker cells Activity waves can be initiated by external stimuli (for example, oxytocin)

or by intrinsic activity of spontaneously active cells. Such cells can be obtained by adjusting

the parameters to shift the position of its null isoclines. The pacemaker cell parameter values

are given in Table 2. The straight line null isocline passes directly through the local minimum

of the cubic null isocline to create an unstable fixed point at the rest state of the cell, as

indicated in Figure 1d. In effect, the cell continually re-excites itself. The cells are connected

symmetrically with a constant coupling value.

The models used in this study are summarised in Table 3.

3 Results

To investigate how the spatial heterogeneity affects the global excitability of the network, the

spatially homogeneous case is studied first, followed by the heterogeneous coupling case.
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3.1 Fully connected square lattice

Simulations of a spatially homogeneous square lattice indicate that for each perturbation there

is a window of coupling strengths in which global excitation of the lattice is possible. For

instance, an initial perturbation of 1 in a fully connected lattice of size 25×25, produces global

excitation for coupling strengths (κ) between 0.76 and 5.12. Below 0.76, the excitation does

not spread beyond the cell to which the stimulus was applied. Above 5.12, no cell is able to

become excited, including the perturbed cell. The surrounding cells act as a current sink; when

the coupling is too strong, this effect prevents excitation. The symbols κmin and κmax denote

the boundaries of the window of excitation; for the standard perturbation ∆v = 1 these values

are 0.76 and 5.12.

The ranges of perturbation and coupling values that permitted global excitation are shown

in Figure 3 for a 25 × 25 lattice. Simulations run for smaller and larger lattices produce

qualitatively similar excitation curves.

3.2 Symmetric coupling in the Bernoulli Lattice

Simulations were run with a lattice of 25× 25 cells and the coupling strengths were chosen in

the range from 1 to 2.5 (i.e. within the window of global excitation for an initial perturbation

of 1). Initial perturbations took the following values: 1, 1.5, 2 and 2.5. As the connectivity

of the lattice (p) increases, the relative cluster size increases in a sigmoidal fashion, as shown

in Figure 4. The response curve does not substantially vary with lattice size, coupling value,

or initial perturbation (Figures 4 and SI 2), which suggests that connectivity is the dominant

factor governing the excitability of the system.

Coupling values were chosen from outside the window of global excitation, and the effect of

spatial heterogeneity in coupling was investigated by varying lattice connectivity as before.

The behaviour for coupling values greater than or equal to the maximum coupling value κmax

is shown in Figures 5b – 5d for initial perturbation ∆v = 1. The behaviour for the minimum

coupling value κmin is shown in Figure 5a. In both cases, the sigmoidal curve was replaced
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by a negatively skewed bell curve, indicating that even when global excitation is precluded in

the fully connected lattice, it can be attained in a partially connected system. Connectivity

attains an optimum in the range p = 0.6 − 0.8. At these probabilities, either more than 90%

of the cells or fewer than 10% of cells become excited. The averaging of the cluster sizes over

100 replicates underlies the decline in cluster size seen in the bell-shaped curve. At p = 1, this

all-or-nothing behaviour is absent. Lattice size had no effect on this result (Figure SI 3).

3.3 Global transitions

Simulations around boundary points κmin and κmax were performed to elucidate the transition

from quiescence to global excitation, at varying levels of connectivity, viz. p = 1, p = 0.7,

p = 0.5 and p = 0.3. Initially, simulations were run at κmax with perturbations from 0.5 to

1.5 at probabilities of 1, 0.7, 0.5 and 0.3 (Figure 6a). In the fully connected lattice (p = 1) no

excitation occurs for ∆v < 1, whereas global excitation is attained for ∆v > 1. At reduced

connectivity, the lattice exhibits global excitation even at perturbations ∆v < 1. The reduced

connectivity allows a more gradual increase in cluster size with increased stimulation. This ef-

fect was especially pronounced at p = 0.7, an almost exactly optimal level of connectivity.

A similar phenomenon occurs near the lower bound (Figure 6b). The fully connected lattice is

unexcitable when the coupling is below κmin whereas global excitation can occur at couplings

above this value. At reduced levels of connectivity, coupling values below the lower bound

are associated with activation clusters of increasing size. The strength of the perturbation,

however, has little effect on the cluster size (Figure SI 4), indicating that connectivity per se is

the dominant factor governing the transition to global excitability.

3.4 Uniformly varying coupling strengths

The sum and standard deviation of the coupling strengths of the four cells surrounding the ex-

cited cell were examined for the fully connected lattice with couplings sampled from a uniform

distribution between 0.5 and 10. For a combined coupling value over the four neighbouring
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cells (κT) less than 21.0, the cluster always exhibits global excitation, with every cell becoming

excited. For κT greater than 22.2, the couplings around the perturbed cell do not allow any

neighbouring cell to become excited. This points to a threshold for global excitation in a fully

connected system with coupling sizes sampled from a uniform distribution. For κT between

these two values, an increase in the standard deviation between the coupling strengths is corre-

lated with a reduced global threshold for excitation (Table SI 2). The ability to achieve global

excitation does not depend on the combined strength of the couplings to the neighbouring cells.

The relationship between standard deviation and global excitation around the upper bound of

coupling strengths (Section 3.1) for ∆v = 1 is shown in Table 4. The standard deviation has

a more pronounced effect on the cluster size than κT. At constant κT, there is a standard

deviation threshold beyond which the system cannot achieve global excitation.

3.5 Uniformly varying coupling strengths — Bernoulli Lattice

The two sources of heterogeneity were combined to give a lattice with coupling values drawn

from a mixed distribution with a finite probability at the value zero and a uniform distribu-

tion over non-zero values. The isotropic lattice was studied for various values of the initial

perturbation (Figure 7a) . The negatively skewed bell-shaped curve was observed with a fixed

coupling value for the smallest perturbation. Compared to the Bernoulli lattice, larger clus-

ters are observed, at higher connectivity values. Again, the declining slope of the bell-shaped

curve for a perturbation of 1 is associated with all-or-nothing behaviour. The transition from

quiescence to global excitability as a function of p, at fixed ∆v, is gradual, in contrast to the

Bernoulli lattice (Figure 7b).

3.5.1 Role of spatial correlation in the coupling structure

The spatial correlation function exhibits a striking difference between networks in which more

than 90% of the cells becoming excited, and those in which fewer than 10% of the cells become

excited. The latter are characterised by a strong correlation between the stimulated cell and

the r = 1 neighbouring cells. The strong local coupling strengths act as a sink, preventing the
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current from dissipating throughout the network (as illustrated in Figure SI 5a where couplings

are strong between the central cell and its r = 1 neighbours). In contrast, a low degree of spatial

correlation between the stimulated cell and its r = 1 neighbour is associated with networks in

which 90% of cells become excited. An example of such a network is given in Figure SI 5b.

As the heterogeneity decreases from p = 0.6 to p = 0.9 (Figures 8a – 8d) this effect becomes

less pronounced. At a connectivity of p = 1, this difference in correlation is not observed

(Figure 8e).

3.6 Asymmetrical coupling - Cell Capacitance

The couplings between cells can be adjusted to represent differences in cell size as explained

in Section 2.2.5. Realistic distributions were derived from data obtained in 15-day pregnant

and 18-day pregnant mice, shown in Figure SI 6. Figure 9 shows a model with scaled ε

values, a constant gap-junctional resistance, and log-normally distributed capacitance values.

At perturbations of 1.5, 2.0, and 2.5 a sigmoidal curve is observed, with an increased probability

of cell-to-cell coupling corresponding to a larger cluster size. For ∆v = 1, a bell-shaped curve

is observed, with slightly reduced connectivity resulting in a larger relative cluster size. The

graph shown is for the day-18 simulations. There was no discernible difference between day-15

and day-18 simulations. It appears that this variation between gestation days is not sufficient to

remove the cells from the excitable range displayed in Figure 3. In contrast to the symmetrically

coupled case discussed earlier (Figure 4) the curve is not sigmoidal for an initial perturbation

of 1, suggesting that an asymmetrically coupled system requires a larger initial perturbation

before full excitation can be achieved at full connectivity.

3.7 Variation in resting membrane potential

If the resting membrane potential is allowed to vary between cells, the pattern of spatial het-

erogeneity enhancing excitability persists. Figure 10a indicates the value of ∆v required to

excite the cell for a given resting membrane potential mean and standard deviation. The

means and standard deviations for other gestation days were determined by interpolation and
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extrapolation, assuming a linear relationship between the 15-day and 18-day data. With the

change in resting membrane potential, the cells’ phase portraits change over time, resulting

in a smaller ∆v-value required for excitation of an individual cell as the system approaches

parturition.

Figure 10b illustrates the relationship between relative cluster size and connectivity for systems

with pre day 15, day 15, day 18 and post day 18 resting membrane potential variation. We see

that a system with resting membrane potential variation only, at a constant coupling strength

(κ = 1), fails to achieve full excitation. However, increased gestational age correlates with

increased excitability.

Figure 11 displays the results from all four combinations of allowing variation in resting mem-

brane potential, cell capacitance, neither, or both. Capacitance variation endows some cells

with a greater ability to excite the network, since larger cells can accommodate the current

sink effect exerted by its neighbours and act as a buffer, enabling all cells to become excited. It

appears that excitability is optimal with larger perturbations in the case combining capacitance

and resting membrane potential variability sampled from the 18-day distribution. In contrast

to the symmetrically coupled case (Figure 4), an asymmetrically coupled system requires a

larger initial perturbation before full excitation can be achieved at full excitability.

3.8 Pacemaker Cells

In networks with a pacemaker cell, the frequency of oscillations of the pacemaker is affected by

connectivity. The current sink represented by neighbouring cells can reduce the frequency of

the pacemaker cell’s free-running oscillation or even cause the cell to cease cycling altogether.

The probability of such a complete cessation of cycling increases with connectivity (Figure 12a).

With the exception of very small coupling values κ, at full connectivity the pacemaker cell is

not able to maintain its excitability and subsequently none of the surrounding cells are able to

become excited. At small values of κ the pacemaker maintains its excitability and pacemaker

frequency is hardly affected by increased probability of connection. Heterogeneity of the spatial

coupling structure thus appears to be an important modulator of excitability.
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The relationship between connectivity and the frequency of oscillations of the pacemaker cell is

shown in Figure 12b, calculated as an average of simulations in which the pacemaker continues

to cycle at a finite frequency. As the connectivity p increases from 0 to 1, the frequency of

oscillations of the pacemaker cell decreases, due to the drain of current to the surrounding

connections. At high coupling strength values of κ = 5 and κ = 10, connectivity has no effect

on frequency since the only way for a pacemaker to retain a finite frequency at these coupling

strengths is to be essentially isolated in the network. This is illustrated in Figure SI 7 which

shows the topology of a sample pacemaker network with finite frequency, and the topology of

a sample network where the pacemaker’s frequency decays.

The key results presented in this paper are summarised in Table 3.
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4 Discussion

It is well known that an increase in the number of gap junctions in myometrial tissue is indicative

of the onset of labour [1]. While the number of connections increases, little is known about

the strength and local structure of these connections. The main finding of this study is that

heterogeneity of the coupling structure of a network of excitable elements allows the system

to respond in a graded manner to a wide range of stimuli. For instance, reduced connectivity

results in a gradual increase in cluster size in response to stimulation, resulting in a smooth

transition between an unexcited and globally excited state, which enhances the scope for precise

regulation. Physiological evidence suggests that the transition from quiescence to excitation is

gradual [16]; this may be explained in part by the results presented here.

Relatively little is known about the effect of heterogeneity in myocyte connections on the

excitability of the network as pregnancy progresses. Our analysis of the pregnant mouse data

confirms the importance of heterogeneity and demonstrates that the network evolves towards

global excitability as labour approaches.

A homogeneous lattice (fully connected with identical couplings) cannot achieve global excita-

tion when the coupling is too strong: neighbouring cells can too readily absorb the membrane

charge associated with the stimulus. When heterogeneity is introduced, whether by remov-

ing selected couplings at random or by varying the coupling values at random, the ability to

achieve global excitation is restored. An intuitive explanation is that heterogeneity creates

local “pockets” of excitability where the initially stimulated cell is less hampered by the charge

drain imposed by its neighbours. Moreover, heterogeneity smoothes out the sudden transition

between an unexcited network and a globally excited one (Section 3.3). This is consistent

with the finding that in the days and hours leading up to labour, contractions spread further

throughout the uterus [29]. Finally, spatial heterogeneity regulates the ability of pacemaker

cells to drive the network, again in a graded fashion.

Simulations on a fully connected square lattice (Section 3.1) indicate that there exist minimum

and maximum coupling values between which global excitation of the network is possible. These
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thresholds were found to be dependent on the initial perturbation. Whereas the homogenous

lattice cannot exhibit global excitation, the heterogeneous lattice formed by removing couplings

is able to exhibit excitation. In the heterogeneous system, the wave of excitation generated by

the central cell has to overcome a lower threshold to excite neighbouring cells. Therefore, the

system can achieve global excitation even with a smaller inciting stimulus.

Investigation of the variability of the couplings surrounding the excited cell in a lattice with

couplings drawn from a uniform distribution indicates that global excitation is affected by

the variance of the coupling strengths to neighbouring cells, and is not solely dependent upon

total coupling. The effect of coupling variance displayed a lower and upper threshold for

global excitation of the network. Therefore a variance within these bounds is optimal for

network excitation. Outside this region, excitability does not spread across the whole network.

It appears that when the variance of connections is too high, a fragmented network results,

which does not allow for propagation of excitability. Overall, it appears that variation of

coupling allows for a larger cluster size at high connectivity. This result was supported by

similar simulations run for an anisotropic lattice (Table SI 2) where the horizontal and vertical

coupling strengths were drawn from distinct uniform distributions.

The importance of heterogeneity was demonstrated by the correlation between cells at increas-

ing distance from the central cell, and the central cell itself. At full connectivity, there was

no discernible difference in correlation. For networks with a lower probability of connection, a

much larger correlation was observed in networks with fewer than 10% of cells becoming excited

when compared with networks with more than 90% of cells becoming excited. This effect was

more pronounced in lower connectivities, reaffirming the importance of heterogeneity. This

supports the notion of excitation pockets, where a cluster of cells that are too well-connected

act as a current sink and prevent the excitation from spreading further through the network.

The main determinant of global excitation is the local spatial correlation around the excited

cell.

Data for resting membrane potential in mice at 15-day and 18-day gestational age indicate

an increase in depolarisation of the cell membrane with increased gestation length, confirming
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the findings of Lodge and Sproat [13]. The statistical variation in resting membrane poten-

tial among cells also increases with gestational age. With resting membrane potential as the

only form of variability in the model, full excitation could not be reached. However, when

resting membrane potentials variability is combined with capacitance variation, the optimum

excitability at intermediate connectivity is restored.

Results were consistent over a range of lattice sizes; from 9×9 to 25×25. Larger lattices were

not investigated due to computational restrictions. Simulations were also run for hexagonal lat-

tices to investigate effects of network structure on excitability. Similar qualitative results were

obtained. However, the hexagonal lattice displayed a wider window of global excitability as

compared to a square lattice with the same number of nodes. An increase in spatial heterogene-

ity enables the system to achieve global excitation more easily. Networks with stochastically

varying node degrees will be investigated in future research.

The resting membrane potential values were taken from recordings of isolated myometrial cells.

However, a system of connected cells settles into a different resting states. To verify that the

experimental data were representative of networked cells, simulations were run in which the

cells where allowed to equilibrate, and differences were found to be negligible.

Preliminary observational data (shown in SI Section 10.1 and Figure SI 8) suggest that an

increase in heterogeneity increases the frequency of the oscillations of the pacemaker. This

was confirmed by our simulations in which the pacemaker cell’s ability to drive the system is

modulated by connectivity. With increased heterogeneity, the drain of current to surrounding

cells has a smaller effect, causing the frequency of oscillations to increase. In addition, a well

connected system makes it more likely that the pacemaker is not able to remain active, and

its oscillations stop altogether. Maximal excitability is associated with a moderate degree of

spatial heterogeneity. This would suggest that a way in which a cell can develop pacemaker

activity is to down-regulate its gap junctions to partially isolate itself in the network. The

suggestion of cell isolation is supported by preliminary experimental data (not shown) in which

individual cells can oscillate but still participate in a global action potential.

Propagation waves in excitable media have been examined extensively using cellular automata [30–
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34]. This approach was then extended to show how the cellular automata models could be

matched to systems such as the FitzHugh-Nagumo set of equations [35, 36]. A cellular au-

tomata model also exists which describes the uterine network using Hodgkin-Huxley physiol-

ogy [37]. Here we have opted to use the FitzHugh-Nagumo model to represent the excitation

and recovery of a myometrial cell. Since the primary aim of the present study was to explore the

consequences of spatial heterogeneity per se, we have used a two-dimensional minimal model to

represent the excitable element without being too computationally expensive. This FitzHugh-

Nagumo model captures the qualitative dynamics of propagation through excitable systems. It

does, however, still have its limitations. The model considers only one activation variable and

one recovery variable. The minimal model can be replaced by models that take into account

individual currents and the intracellular calcium stores [38–40]. Future work will focus on these

more detailed models to more accurately represent the calcium influx resulting in a contraction.

In addition, a three-dimensional system will be considered to model the uterine network more

closely.

Miyoshi et al. [41] demonstrated that gap junctional conductance between coupled cells is

dependent on the trans-junctional voltage, which adds a non-linear effect that may play an

important role in the transition from the globally quiescent state to the globally excitable

state. This effect has not been taken into account in the present study and will be the subject

of future research.

In summary, the mathematical model used here indicates that spatial heterogeneity may serve

as an important modulator of excitability in uterine muscle. Spatial heterogeneity of cell-to-

cell connections promotes an increase in the excitability of the network, and the ability of a

network to become fully excited is governed predominantly by the local connection structure.

In addition, heterogeneity in both cell capacitance and resting membrane potential also play a

role. Similarly, heterogeneity allows a pacemaker cell to drive the system.

Shifts in this heterogeneity may be a significant factor in the regulation of myometrial ex-

citability as pregnancy progresses from conception to parturition. Pre-term labour may be

associated with a premature development of spatial heterogeneity. Mapping of spatial hetero-
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geneity may prove to be a diagnostic tool to monitor the development of excitability throughput

pregnancy.
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6 Figures

(a) (b)

(c) (d)

v

w

P

Figure 1: Axes labels v and w represent the non-dimensionalised excitation current and recovery
current, respectively. (a) Local dynamics described by equations (3a) and (3b). The dot-dashed
line represents the null isocline ẇ(t) = 0, and the curve represents the null isocline v̇(t) = 0.
The dashed section of the curve is the unstable branch. The fixed point of the dynamics is at P,
where the null isoclines meet. Parameters are given in Table 1. (b) and (c) Trajectories, shown
as thick, solid lines, vary depending on the initial perturbation from the equilibrium point P. (b)
A small perturbation quickly relaxes back to rest. (c) A large perturbation triggers a substantial
response. An initial rapid excitation ( 1©) is followed by a period in which the system remains
in an excited state ( 2©). After a rapid relaxation ( 3©), the system enters a refractory period in
which no further excitation can take place ( 4©), before regaining excitability as it returns to its
rest state ( 5©). (d) Local dynamics described by equations (3a) and (3b) for a pacemaker cell.
Parameters as in Table 2. P is an unstable fixed point, causing continuous re-excitation of the
cell after a refractory period.
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(a) (b) (c)

(d) (e)

Figure 2: (a) Schematic representation of the lattice. Cells are referred to using i, j coordinates;
the resistance between cells is denoted by R. The resistances are converted into dimensionless
coupling values as detailed in Section 2.2.3. (b) and (c) The resistance of a gap junction. (b)
The resistance ri across an individual connexon (consisting of six connexins). (c) A number of
connexons link the two cells. The individual connexons act in parallel, giving an equivalent
resistance R. (d) Electrical circuit diagram representing the current flow between connected
cells. Cell (i, j) is the cell of interest, coupled to four surrounding cells; R represents the
resistances in gap junctions. The circuit at cell (i, j) represents a basic model of an excitable
system [28]. Ve represents the external potential; Vi represents the internal potential; Ci,j
is the cell capacitance; the excitable element represents the recovery current; and the non-
linear current-voltage device (I) represents the fast current. (e) Asymmetry in coupling due to
different cell sizes. κ1 > κ2.
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Figure 3: The range of parameters that allow global excitation (shaded region) in a 25 ×
25 lattice. The strength of coupling and initial perturbation are non-dimensionalised. The
horizontal line corresponds to κmin below which global excitation is impossible; κmax defines
the maximum coupling value for each perturbation and corresponds to the curve bounding the
shaded region from above.
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Figure 4: Relative cluster size versus connectivity for symmetrical coupling in the Bernoulli
lattice. Points show mean ± SEM of 100 simulations for a 25× 25 lattice. In all simulations, a
coupling strength of κ = 1 was chosen. The four lines represent initial perturbations of 1, 1.5,
2 and 2.5, shown in the same colour due to the proximity of the curves.
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Figure 5: Relative cluster size versus connectivity for K values outside the window of excitabil-
ity in the symmetrical Bernoulli lattice. Points show mean ± SEM of 100 simulations for a
lattice size of 25× 25. (a) κmin = 0.76, the four lines represent initial perturbations of 1, 1.5,
2 and 2.5 and are shown in the same colour due to the proximity of the curves; (b) κmax = 5.2,
the four lines represent initial perturbations of 1, 1.5, 2 and 2.5. The dark curve represents an
initial perturbation of 1, perturbations of 1.5, 2 and 2.5 are shown in the same (lighter) colour
due to the proximity of the curves; (c) κ = 10, the four lines represent initial perturbations of
1, 1.5, 2 and 2.5 on a graded scale from dark to light; (d) κ = 15, the four lines represent initial
perturbations of 1, 1.5, 2 and 2.5 on a graded scale from dark to light.
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Figure 6: Relative cluster size versus small changes in parameters. Points show mean ±
SEM of 100 simulations, for a lattice size of 25 × 25. The four lines represent probabilities of
connections between cells of 1, 0.7, 0.5 and 0.3 on a graded scale from dark to light. Anomalous
cluster sizes are too few to affect the average. (a) Fixed coupling value κmax = 5.12 with
varying perturbation; (b) Fixed initial perturbation = 1.0 with varying coupling values around
κmin = 0.76.

33



(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Perturbation

R
el

at
iv

e 
C

lu
st

er
 S

iz
e

(b)

0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Perturbation

R
el

at
iv

e 
C

lu
st

er
 S

iz
e

Figure 7: (a) Relative cluster size versus connectivity, for random coupling values. All points
show mean ± SEM of 100 simulations, for an isotropic lattice of size 25 × 25. The four lines
represent initial perturbations of 1, 1.5, 2 and 2.5. A perturbation of 1 is shown in the darkest
shade. Lighter colours represent perturbations of 1.5, 2 and 2.5 due to their close proximity.
All κ ∈ [0.5, 10]. (b) Relative cluster size versus perturbation, for an isotropic square lattice of
size 25 × 25. All κ ∈ [0.5, 10]. Points show mean ± SEM of 100 simulations. The four lines
represent probabilities of connections between cells of 1.0, 0.7, 0.5 and 0.3 on a graded scale
from dark to light. Anomalous cluster sizes are too few to affect the average.
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Figure 8: Correlation function versus increasing distance from the stimulated cell. Points show
mean ± SEM of 100 simulations. The darker lines correspond to networks with fewer than
10% of cells becoming excited. The paler lines correspond to networks with more than 90%
of cells becoming excited. The initial perturbation is kept constant 1.Each graph represents
a different probability of connections existing between any two given cells. (a) Probability =
0.6; (b) Probability = 0.7; (c) Probability = 0.8; (d) Probability = 0.9; (e) Probability = 1.
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Figure 9: Relative cluster size versus connectivity, for a selection of initial perturbations. All
points show mean ± SEM of 100 simulations, for an asymmetrically coupled lattice of size
25 × 25. The four lines represent initial perturbations of 1, 1.5, 2 and 2.5. Perturbations of
1 are shown in the darkest shade, and the remaining perturbations are shown lighter due to
their close proximity. Capacitance values are sampled from 18-day distribution. There is no
discernible difference in the model using capacitance values sampled from 15-day distribution.
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Figure 10: (a) Excitation threshold a cell needs to overcome versus the gestation day. The
points from day 15 and day 18 gestations are determined by experimental data. Other points
are generated by interpolation and extrapolation based on a linear relationship between day
15 and day 18 data. All points show mean ± SEM of 100 simulations. (b) Relative cluster
size versus connectivity, for an initial perturbation of 1. All points show mean ± SEM of 100
simulations, for a lattice size of 25×25. There is no asymmetry due to cell capacitance variation:
κ = 1. Lines represent simulations incorporating pre day 15 variation, day 15 variation, day
18 variation and post day 18 variation on a graded scale from dark to light.
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Figure 11: Relative cluster size versus connectivity, for a selection of initial perturbations. All
points show mean ± SEM of 100 simulations, for a lattice size of 25×25. The five lines represent
initial perturbations of 1, 1.5, 2 and 2.5 on a graded scale from dark to light. Perturbations of
1.5, 2 and 2.5 are shown at the same shade due to their close proximity. (a) Resting membrane
potentials and capacitances sampled from day 15 distribution; (b) Resting membrane potentials
sampled from day 15 distribution, cell capacitances sampled from day 18 distribution; (c)
Resting membrane potentials sampled from day 18 distribution, cell capacitances sampled from
day 15 distribution; (d) Resting membrane potentials and capacitances sampled from day 18
distribution.
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Figure 12: (a) Probability that the pacemaker cell becomes inactivated versus connectivity,
for a selection of coupling strengths. All points show the number of times excitation was not
maintained in 50 simulations as mean ± SEM of 15 repetitions. Lattice size is 25× 25. Lines
represent coupling strengths of 0.1, 0.5, 1, 5 and 10 on a graded scale from dark to light.
Coupling strengths of 5 and 10 are shown in the same shade due to their close proximity. (b)
Frequency of oscillations of the pacemaker cell versus connectivity, for a selection of coupling
strengths. All points show mean ± SEM of 100 simulations where excitability of the pacemaker
cell was maintained, for a lattice size of 25× 25. Lines represent coupling strengths of 0.1, 0.5,
1, 5 and 10 on a graded scale from dark to light. The gaps in the individual lines illustrate
where the pacemaker cannot maintain excitability.
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7 Tables

Table 1: Parameter values used in the simulations in Section 3.1 – 3.7 with the exception of ε
in Section 3.6 which is scaled according to the modal point of the cell capacitance distributions.

Parameter A α γ w0 v0 ε

Value 3 3 0.05 0.4 0.4 0.2

Table 2: Parameter values for pacemaker cells.

Parameter A α γ w0 v0 ε

Value 3 3 0.1 0.4 0.7 0.2
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Table 3: Summary of the models used.

Type of
Network

Coupling
Method of
Generation

Key Results

Homogeneous
lattice

Symmetrical Fixed coupling κ
Minimum and maximum coupling for each
perturbation in which global excitation is
possible.

Bernouilli lattice Symmetrical
Fixed coupling κ
with varying proba-
bility p.

Even when global excitation cannot occur
in the fully connected lattice, it can be at-
tained in a partially connected system.

Uniformly
distributed

Symmetrical

Couplings drawn
from a uniform
distribution on
[0.5, 10] with varying
probability p.

Total coupling between neighbouring cells
has a minimum and maximum threshold
for global excitation. Between these val-
ues (and with constant total coupling), the
ability to achieve global excitation is de-
pendent on the standard deviation of cou-
pling values.

Cell capacitance Asymmetrical

Coupling κ = RC−1.
C is drawn from
distribution of cell
capacitance taken
from experimental
data. R is fixed.
Probability p is
varied.

The presence of spatial heterogeneity is es-
sential for global excitation at comparable
perturbation values to the Bernouilli lat-
tice. A larger perturbation is needed for
full excitation and full connectivity. There
is no discernible difference between day 15
and day 18 gestation.

Resting
membrane
potential

Symmetrical

Fixed coupling κ.
Each cell has its
own parameters and
so its own resting
membrane potential.

Increase in gestational age results in a
smaller excitation threshold for each cell to
overcome. Systems with resting membrane
potential variation only fail to achieve
global excitation.

Cell capacitance
and resting
membrane
potential
combined

Asymmetrical

Each cell has its
own resting mem-
brane potential. C
is drawn from distri-
bution of cell capaci-
tance. R is fixed.

Both forms of variation allows global ex-
citation in heterogeneous systems. A
larger perturbation is needed than in the
Bernouill lattice to achieve global excita-
tion at full connectivity.

Pacemaker cells Symmetrical

Central cell is a pace-
maker. All other cells
as before. Fixed cou-
pling κ with varying
probability p.

Highly connected systems have a greater
probability of the pacemaker cell ceasing to
be active. The frequency of oscillation of
the pacemaker cell decreases with increas-
ing connectivity. At high coupling strength
values, connectivity has no effect on the
frequency — the only way for a pacemaker
to retain a finite frequency is to be isolated.
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Table 4: The effect of standard deviation of coupling strengths on global excitation in a 25×25
square lattice, with an initial perturbation of 1.0. Full table shown in Table SI 3.

Horizontal κ 5.2 · · · 6.6 6.7 · · · 9.7 9.8 · · · 10.4

Vertical κ 5.2 · · · 3.8 3.7 · · · 0.7 0.6 · · · 0.0

St. Dev. κ 0.0 · · · 1.6166 1.7321 · · · 5.1962 5.3116 · · · 6.0044

Cluster Size 0 · · · 0 1 · · · 1 0.04 · · · 0.04
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8 Short Title

Spatial Heterogeneity in the Myometrium
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9 Appendix

We follow the derivation provided by Keener and Sneyd [28]. Consider the circuit given in

Figure 2d showing a simplified model of the cell membrane. From Kirchoff’s laws one ob-

tains:

Cm
dV

dτ
+ F (V ) + i = −I0, (13a)

D
di

dτ
+Ri = V − V0 , (13b)

where I0 is the applied external current, i is the current through the resistor-inductor, V =

Vi − Ve is the membrane potential, R is the resistance and V0 is the potential gain across

the battery which forms part of the excitable element representing the recovery current in

Figure 2d. D is the damping coefficient, which captures the inertia of the system induced by

the gating kinetics, as shown by FitzHugh in 1961 [21]. R and D are incorporated into the

“excitable element”. Here, τ represents dimensional time. The function F (V ) is a cubic with

three zeros: the smallest V = 0 and largest V = V1 are stable solutions of dV/dτ = −F (V ).

The passive resistance of the nonlinear element (defined as a tunnel diode by Nagumo [22]) is

R1 = 1/F ′(0).

The equations are rendered dimensionless as follows. Define v = V/V1, w = R1i/V1, f(v) =

−R1F (V1v)/V1 and t = R1τ/L. Equations (13) can then be rewritten as follows:

ε
dv

dt
= f(v)− w − w0, (14a)

dw

dt
= v − γw − v0, (14b)

where ε = R2
1Cm/D, w0 = R1I0/V1, v0 = V0/V1 and γ = R/R1. The function f(v) is a cubic

and can be written as follows:

f(v) = Av(v − α)(1− v) . (15)
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10 Supplementary Information
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Figure SI 1: Schematic representation of the `1 distances in a 5 × 5 lattice, indicated by number
and on a graded scale from dark to light. The stimulated cell is indicated in black.
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Figure SI 2: Relative cluster size versus connectivity. Points show mean ± SEM of 100 sim-
ulations. The four lines represent initial perturbations of 1, 1.5, 2 and 2.5, all shown at the
same shade due to their close proximity. (a)-(c) are for a 15 × 15 lattice, (d)-(f) for a 25 × 25
lattice. (a) & (d): κ = 1.5. (b) & (e): κ = 2.0. (c) & (f): κ = 2.5.
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Figure SI 3: Relative cluster size versus connectivity for large κ. Points show mean ± SEM
of 100 simulations. All simulations were for a lattice size of 15 × 15. The four lines represent
initial perturbations of 1, 1.5, 2 and 2.5 on a graded scale from dark to light. (a) κmax = 5.2,
perturbations of 1.5, 2 and 2.5 are shown at the same shade due to their close proximity. (b)
κ = 10. (c) κ = 20.
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Figure SI 4: Relative cluster size per coupling value κ close to κmin for varying initial perturba-
tions. Points show mean ± SEM of 100 simulations, all for a square lattice of size 25× 25. The
four lines represent probabilities of connections between cells of 1.0, 0.7, 0.5 and 0.3 on a graded
scale from dark to light. (a) Perturbation = 1.5; (b) Perturbation = 2.0; (c) Perturbation = 2.5.
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(a) (b)

Figure SI 5: The topology of the central 12 × 12 cells of a network (truncated from the 25 × 25
cell network for clarity) where the connections are drawn from a uniform distribution between
5 and 10. The stimulated cell is illustrated in white, all other cells are shown in black. The
connections between cells are shown on a graded scale from light to dark grey with increasing
connection. The probability of connection is 0.6, and the initial perturbation is 1. (a) A network
which is not able to achieve full excitation. There is a high correlation between the stimulated
cell and its r = 1 neighbours. (b) A network which is able to achieve full excitation. There is
a low correlation between the stimulated cell and its r = 1 neighbours.
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Figure SI 6: Histograms and maximum-likelihood fitted log-normal distributions representing
capacitance values for (a) 15-day pregnant mice; (b) 18-day pregnant mice.
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(a) (b)

Figure SI 7: The topology of the central 12 × 12 cells of pacemaker cell networks (truncated
from the 25 × 25 network for clarity). The pacemaker cell is illustrated in white, all other
cells are shown in black. The connections between cells are shown on a graded scale from light
to dark grey with increasing connection. The coupling strength κ = 5 and the probability
of connection is 0.6. (a) A sample network that results in the pacemaker cell having a finite
frequency. The pacemaker cell is isolated in the network. (b) A sample network in which the
frequency of the pacemaker cell decays. The pacemaker cell is well-connected to its neighbours.
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10.1 Preliminary observational data - an increase in heterogeneity increases

the frequency of the oscillations of the pacemaker

10.1.1 Methods

Slice Preparation Myometrial biopsies were taken from patients (gestation 38 – 40 weeks,

not in labour) undergoing caesarean section due to presumed fœtal distress. Informed written

consent and approval from the Local Ethics Committee (REC-05/Q2802/107) were obtained

prior to sample collection. Macroscopic myometrial samples were dissected under a light micro-

scope using a scalpel blade into a piece of approximately 1×0.5×0.3 cm displaying well-defined

layers running along the longitudinal axis of the strip. The strip was then ligatured with braided

suture at each extremity before being stretched and fixed to the base of a metallic tissue holder

using cyanoacrylate glue. Slices 200 µm thick were cut using a vibroslicer (Integraslice 7550

PSDS, Campden Instruments, UK) in oxygenated (4◦C) KREBS TES solution (in mM: NaCl,

133; KCl, 4.7; MgSO4, 1.2; KH2PO4, 1.2; glucose, 11.1; TES, 10; CaCl2, 2.5; pH:7.4). Slicing

was performed with a razor blade, cut to a convenient size, at an oscillating speed of 86 Hz

with lateral amplitude of 1 mm and an advance speed of 0.10 mm s−1 – 0.20 mm s−1. First

cuts and the glued base of the strip were discarded. Each slice was then separated by cutting

the extremity of the slice using fine dissecting scissors before incubation for 1 hour at room

temperature in KREBS TES solution for equilibration and recovery. Slices were then used

immediately.

Confocal Imaging of [Ca2+]i Myometrial slices were incubated for 30 minutes at 37◦C

in Krebs solution containing 13 µM Fluo-4/AM (Invitrogen, UK). Dye loading was aided by

inclusion of non-ionic detergent Pluronic F127 (0.025%, w/v). Loaded slices were placed in a

glass-bottomed Petri dish and weighted down with a 250 mg slice grid (HSG-5, ALA Scientific,

USA). The dish was secured on the stage of an inverted microscope (Aiovert 200M) equipped

with an LSM 510 META confocal scanner (Carl Zeiss, UK). The strips were superfused with

pre-warmed (35◦C) Krebs solution at a flow rate of 2 ml min−1 for 30 – 40 minutes until stable

spontaneous contractions developed. If a slice did not develop spontaneous activity in this
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time, it was discarded.

The slices were scanned with a 488 nm wavelength laser beam focused into a diffraction-limited

spot via a Flua 5x/0.24NA objective lens. Fluorescence was recorded through a band-pass

filter (505 – 530 nm) using a photomultiplier tube with a pinhole in the light path. The pinhole

diameter was 2 Airy units in order to reject most out-of-focus fluorescence and to maximise

the throughput of light originating from the focal plane. The excitation and emission beams

were separated by a dichromatic mirror centred at 495 nm. Images were taken for a frame size

of 512×256 pixels at a frame rate of 2 frames per second in unidirectional scan and 4 frames

per second in bidirectional scan. Image acquisition was controlled by Zeiss LSM v4.0 software.

Time series of up to 8000 frames were acquired.

10.2 Results

In the presence of the gap junction inhibitor carbenoxolone the frequency of activity increases

and the duration of an individual action potential decreases, as indicated in Figure SI 8.

Figure SI 8: Effect of carbenoxolone on [Ca2+]i transients in bundles. Event duration and
frequency in the absence (Spon) and presence (Carb) of carbenoxolone. Values represent mean
± SEM; an asterisk (∗) indicates significance at the P = 0.05 level (Student’s t-test); n = 8.
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Table SI 1: Cell capacitance data taken from mouse myometrium at 18 day and 15 day gestation.

Day 18 Day 15
(pF) (pF)

73 128 93.06 94.71 64.5 56.9 66.85 85.57

83 68 86.63 99.01 62.9 60.04 94.92 47.8

62.4 120 118.19 86.7 62.1 53.77 54.56 83.62

73 47.37 84.8 96.36 62.14 72.84 78.23 76.99

82 80.32 96.76 79.96 93.94 58.9 102.68 61.63

82.2 103.39 63.75 117.59 50.7 71.91 96.26 52.8

86 113.27 45.45 74.87 65.14 71.86 89.5 68.55

69 169.88 57.67 58.57 43.44 73.41 88.8 57.41

66.98 71.66 120.41 93.81 52.18 85.62 54.54 63.45

70 93.19 80.42 89.17 81.23 66.91 40.84 97.75

76.32 81.71 55.4 114.95 111.29 129.69 76.62 78.62

70 68.87 83.47 96.12 57.25 69.97 56.02 120.6

91.35 96.02 74.69 69.4 51.06 105.38 67.88

62.13 113.15 64.27 75.15 76.51 78.73 62.46

63.2 93.02 83.95 107.79 99.01 60.27 63.75

67.89 73.2 82.01 64.65 71.15 59.02 49.11

73.11 94.31 65.4 50.2 54.39 76.3 46.09

58.64 73.48 77.12 89.62 106.4 53.58 70.17

77.35 74.49 107.17 80.78 79.88 95.74 48.5

110.97 65.16 96.46 63.56 63.5 105.9 66.14

49.8 91.4 88.01 64.26 76.59 85.36 45.98

82.17 85.3 61.18 64.56 59.7 54.7 55.01

103.12 107.36 57.96 70.51 84.34 53.96

102.31 88.09 114.35 56.65 53.18 73.05

141.2 58.37 85.54 58.57 58.7 57.5

64.5 53.05 106.43 68.09 74.91 79.92

81.23 72.27 69.71 107.2 57.92 59.36

56.09 59.09 84.84 97.73 60.74 67.66

56.84 125.48 82.83 57.1 73.51 60.94

48.78 171.77 107.16 78.62 87.68 52.35

70.3 113.58 70.98 57.87 84.18 43.57

88.27 55.54 98.95 83.89 42.93 95.18

79 79.15 100.65 114.8 54.09 47.91

70 78.63 63.41 52.9 57.41 64.06

82 76.59 72.5 96.67 54.51 80.92

76.41 89.47 114.82 86.9 41.66 43.36
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Table SI 2: Total K and standard deviation of K around excited cell, for a fully connected
25 × 25 square lattice with couplings drawn from a uniform distribution. Kh ∈ [0.5, 5], Kv ∈
[5, 10]. Data shown for a total coupling K between 21 and 22.2, and arranged in increasing
standard deviation.

Total St. Dev. Relative Cluster Total St. Dev. Relative Cluster
K K Size K K Size

21.7154 1.0451 0 21.3824 2.8636 1

21.1468 1.1987 0 21.4167 2.9621 1

21.0597 1.3439 0 21.4531 3.0879 1

21.5622 1.4293 0 21.7490 3.1979 0

21.0219 1.8396 0 22.0847 3.2100 0

21.6085 1.9802 0 21.8734 3.2423 0

21.4277 2.0487 0 21.8849 3.2522 0

21.3947 2.0704 0 21.7770 3.3834 1

22.1547 2.0914 0 22.0845 3.4102 0

21.2315 2.1224 0 21.5571 3.4309 1

22.1620 2.1281 0 21.1673 3.5437 1

21.3721 2.1308 0 21.5300 3.5484 1

21.3219 2.1786 0 21.6417 3.5931 1

21.0063 2.3078 1 21.0154 3.5979 1

22.0352 2.3201 0 21.7100 3.6670 1

21.5215 2.4436 0 21.1944 3.7901 1

21.5689 2.4796 0 21.6877 3.7981 1

21.1142 2.5038 1 21.7880 3.8116 1

21.7203 2.5616 0 21.5994 4.1018 1

21.7749 2.6418 0 21.2375 4.1204 1

21.8832 2.7984 0 21.3395 4.1600 1

21.6974 2.7986 0 21.8725 4.2026 1
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Table SI 3: Standard deviation of coupling values around the central cell affects global excitation
in a fully connected 25× 25 square lattice, with an initial perturbation of 1.0. Total coupling
is kept constant around the perturbed cell to allow for standard deviation comparisons only.

Horizontal Vertical St. Dev. Relative Cluster Horizontal Vertical St. Dev. Relative Cluster
K K K Size K K K Size

5.2 5.2 0.0 0 7.9 2.5 3.1177 1

5.3 5.1 0.1155 0 8.0 2.4 3.2332 1

5.4 5.0 0.2309 0 8.1 2.3 3.3486 1

5.5 4.9 0.3464 0 8.2 2.2 3.4641 1

5.6 4.8 0.4619 0 8.3 2.1 3.5796 1

5.7 4.7 0.5774 0 8.4 2.0 3.6950 1

5.8 4.6 0.6928 0 8.5 1.9 3.8105 1

5.9 4.5 0.8083 0 8.6 1.8 3.9260 1

6.0 4.4 0.9238 0 8.7 1.7 4.0415 1

6.1 4.3 1.0392 0 8.8 1.6 4.1569 1

6.2 4.2 1.1547 0 8.9 1.5 4.2724 1

6.3 4.1 1.2702 0 9.0 1.4 4.3879 1

6.4 4.0 1.3856 0 9.1 1.3 4.5033 1

6.5 3.9 1.5011 0 9.2 1.2 4.6188 1

6.6 3.8 1.6166 0 9.3 1.1 4.7343 1

6.7 3.7 1.7321 1 9.4 1.0 4.8497 1

6.8 3.6 1.8475 1 9.5 0.9 4.9652 1

6.9 3.5 1.9630 1 9.6 0.8 5.0807 1

7.0 3.4 2.0785 1 9.7 0.7 5.1962 1

7.1 3.3 2.1939 1 9.8 0.6 5.3116 0.04

7.2 3.2 2.3094 1 9.9 0.5 5.4271 0.04

7.3 3.1 2.4249 1 10.0 0.4 5.5426 0.04

7.4 3.0 2.5403 1 10.1 0.3 5.6580 0.04

7.5 2.9 2.6558 1 10.2 0.2 5.7735 0.04

7.6 2.8 2.7713 1 10.3 0.1 5.8890 0.04

7.7 2.7 2.8868 1 10.4 0.0 6.0044 0.04

7.8 2.6 3.0022 1
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