34 research outputs found

    Small Molecules in Development for the Treatment of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease resulting from pathologically low levels of survival motor neuron (SMN) protein. The majority of mRNA from the SMN2 allele undergoes alternative splicing and excludes critical codons, causing an SMN protein deficiency. While there is currently no FDA-approved treatment for SMA, early therapeutic efforts have focused on testing repurposed drugs such as phenylbutyrate (2), valproic acid (3), riluzole (6), hydroxyurea (7), and albuterol (9), none of which has demonstrated clinical effectiveness. More recently, clinical trials have focused on novel small-molecule compounds identified from high-throughput screening and medicinal chemistry optimization such as olesoxime (11), CK-2127107, RG7800, LMI070, and RG3039 (17). In this paper, we review both repurposed drugs and small-molecule compounds discovered following medicinal chemistry optimization for the potential treatment of SMA

    Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity

    Get PDF
    Preclinical models of Alzheimer’s disease (AD) suggest APOE modulates brain function in structures vulnerable to AD pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in young individuals remains unknown. In a large sample (N = 608) of young, asymptomatic individuals, we measure the impact of both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology. Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing. We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid potential therapeutic/interventional strategies in the detection and prevention of AD

    Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug-drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease

    Discovery of a small molecule probe that post-translationally stabilizes the survival motor neuron protein for the treatment of spinal muscular atrophy.

    Get PDF
    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA

    Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease

    Get PDF
    Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer’s disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD

    Severe childhood malaria syndromes defined by plasma proteome profiles

    Get PDF
    BACKGROUND Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes. METHODS AND FINDINGS Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children. CONCLUSIONS We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes

    A cross-sectional survey investigating women's information sources, behaviour, expectations, knowledge and level of satisfaction on advice received about diet and supplements before and during pregnancy

    Get PDF
    Background The reported long-term effects of poor maternal nutrition and uptake of recommended supplements before and during pregnancy was the impetus behind this study. Our objectives were to investigate and understand women’s expectations, knowledge, behaviour and information sources used regarding the use of nutrition and vitamin supplements before and during pregnancy. Methods A cross-sectional survey using a self-administered questionnaire was undertaken. A purposive sampling technique was used. Women attending the antenatal clinic at Croydon University Hospital during 2015 were invited to take part in the study. The data was analysed using descriptive statistics, paired sample T-tests and Chi-squared tests, with the level of significance set at 5% (p < 0.05). Results A total of 133 pregnant women completed the survey. Analysis of the results showed that women are currently using electronic resources (33%, n = 42) rather than healthcare professionals (19%, n = 25) as an information source before pregnancy. Women who sourced information through the internet were significantly more likely to take folic acid (p = 0.006) and vitamin D (p = 0.004) before pregnancy. Women preferred to receive information from the antenatal clinic (62%, n = 83), internet (46%, n = 61) and from mobile applications (27%, n = 36). Although women believed they had sufficient knowledge (60%, n = 80) and had received adequate advice (53%, n = 70) concerning the correct supplements to take, this was not demonstrated in their behaviour, with only a small number of women (37%, n = 49) taking a folic acid supplement before pregnancy. Women mistakenly perceived the timing of supplement advice as correct, with only a small number of women (18%, n = 23) considering the advice on supplements as too late. Conclusions Despite the small sample size, this study demonstrated that women did not receive timely and/or accurate advice to enable them to take the recommended supplements at the optimal time. Women had the misconception that they understood the correct use of pregnancy supplements. This misunderstanding may be prevented by providing women intending to become pregnant with a structured, approved electronic source of information that improves their supplements uptake

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Synthesis of (±)-trans-2,5-Diisopropylborolane

    No full text
    The cyclic hydroboration of 2,7-dimethyl-2,6-octadiene (6) was studied. It was found that the stereochemical outcome of the reaction was dependent upon the solvent, temperature, time and the nature of the borane reagent. Pure racemic trans-2,5-diisopropylborolane (14) was isolated following selective complexation of the cis-2,5-diisopropylborolane (15) with 1-(2-hydroxyethyl)-pyrrolidine
    corecore