596 research outputs found
Critical Crossover Between Yosida-Kondo Dominant Regime and Magnetic Frustration Dominant Regime in the System of a Magnetic Trimer on a Metal Surface
Quantum Monte Carlo simulations were carried out for the system of a magnetic
trimer on a metal surface. The magnetic trimer is arranged in two geometric
configurations, viz., isosceles and equilateral triangles. The calculated
spectral density and magnetic susceptibility show the existence of two phases:
Yosida-Kondo dominant phase and magnetic frustration dominant phase.
Furthermore, a critical transition between these two phases can be induced by
changing the configuration of the magnetic trimers from isosceles to
equilateral triangle.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. Soc. Jp
BIOLOGICAL AMMONIA REMOVAL BY SUBMERGED AERATED FILTER FROM HANOI GROUND WATER
Joint Research on Environmental Science and Technology for the Eart
Decomposition of semigroup algebras
Let A \subseteq B be cancellative abelian semigroups, and let R be an
integral domain. We show that the semigroup ring R[B] can be decomposed, as an
R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A].
In the case of a finite extension of positive affine semigroup rings we obtain
an algorithm computing the decomposition. When R[A] is a polynomial ring over a
field we explain how to compute many ring-theoretic properties of R[B] in terms
of this decomposition. In particular we obtain a fast algorithm to compute the
Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an
application we confirm the Eisenbud-Goto conjecture in a range of new cases.
Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.Comment: 12 pages, 2 figures, minor revisions. Package may be downloaded at
http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/MonomialAlgebras/html
Prophylactic and Therapeutic Efficacy of Avian Antibodies against Influenza Virus H5N1 and H1N1 in Mice
Background: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1.
Methods and Findings: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection.
Conclusions: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic
No detection of large-scale magnetic fields at the surfaces of Am and HgMn stars
We investigate the magnetic dichotomy between Ap/Bp and other A-type stars by
carrying out a deep spectropolarimetric study of Am and HgMn stars. Using the
NARVAL spectropolarimeter at the Telescope Bernard Lyot (Observatoire du Pic du
Midi, France), we obtained high-resolution circular polarisation spectroscopy
of 12 Am stars and 3 HgMn stars. Using Least Squares Deconvolution (LSD), no
magnetic field is detected in any of the 15 observed stars. Uncertaintiies as
low as 0.3 G (respectively 1 G) have been reached for surface-averaged
longitudinal magnetic field measurements for Am (respectively HgMn) stars.
Associated with the results obtained previously for Ap/Bp stars, our study
confirms the existence of a magnetic dichotomy among A-type stars. Our data
demonstrate that there is at least one order of magnitude difference in field
strength between Zeeman detected stars (Ap/Bp stars) and non Zeeman detected
stars (Am and HgMn stars). This result confirms that the
spectroscopically-defined Ap/Bp stars are the only A-type stars harbouring
detectable large-scale surface magnetic fields.Comment: 6 pages, 3 figures, accepted for publication in A&
Modeling recursive RNA interference.
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
Quality of private and public ambulatory health care in low and middle income countries: systematic review of comparative studies
Paul Garner and colleagues conducted a systematic review of 80 studies to compare
the quality of private versus public ambulatory health care in low- and
middle-income countries
Reference Ranges for Bone Mineral Density and Prevalence of Osteoporosis in Vietnamese Men and Women
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the effect of different reference ranges in bone mineral density on the diagnosis of osteoporosis.</p> <p>Methods</p> <p>This cross-sectional study involved 357 men and 870 women aged between 18 and 89 years, who were randomly sampled from various districts within Ho Chi Minh City, Vietnam. BMD at the femoral neck, lumbar spine and whole body was measured by DXA (Hologic QDR4500). Polynomial regression models and bootstraps method were used to determine peak BMD and standard deviation (<it>SD</it>). Based on the two parameters, we computed T-scores (denoted by <it>T</it><sub>VN</sub>) for each individual in the study. A similar diagnosis was also done based on T-scores provided by the densitometer (<it>T</it><sub>DXA</sub>), which is based on the US White population (NHANES III). We then compared the concordance between <it>T</it><sub>VN </sub>and <it>T</it><sub>DXA </sub>in the classification of osteoporosis. Osteoporosis was defined according to the World Health Organization criteria.</p> <p>Results</p> <p>In post-menopausal women, the prevalence of osteoporosis based on femoral neck <it>T</it><sub>VN </sub>was 29%, but when the diagnosis was based on <it>T</it><sub>DXA</sub>, the prevalence was 44%. In men aged 50+ years, the <it>T</it><sub>VN</sub>-based prevalence of osteoporosis was 10%, which was lower than <it>T</it><sub>DXA</sub>-based prevalence (30%). Among 177 women who were diagnosed with osteoporosis by <it>T</it><sub>DXA</sub>, 35% were actually osteopenia by <it>T</it><sub>VN</sub>. The kappa-statistic was 0.54 for women and 0.41 for men.</p> <p>Conclusion</p> <p>These data suggest that the <it>T-</it>scores provided by the Hologic QDR4500 over-diagnosed osteoporosis in Vietnamese men and women. This over-diagnosis could lead to over-treatment and influence the decision of recruitment of participants in clinical trials.</p
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
PLAST: parallel local alignment search tool for database comparison
Background: Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors. Results: A parallel algorithm for comparing large genomic banks and targeting middle-range computers has been developed and implemented in PLAST software. The algorithm exploits two key parallel features of existing and future microprocessors: the SIMD programming model (SSE instruction set) and the multithreading concept (multicore). Compared to multithreaded BLAST software, tests performed on an 8-processor server have shown speedup ranging from 3 to 6 with a similar level of accuracy. Conclusions: A parallel algorithmic approach driven by the knowledge of the internal microprocessor architecture allows significant speedup to be obtained while preserving standard sensitivity for similarity search problems.
- …