11 research outputs found

    The photometric observation of the quasi-simultaneous mutual eclipse and occultation between Europa and Ganymede on 22 August 2021

    Full text link
    Mutual events (MEs) are eclipses and occultations among planetary natural satellites. Most of the time, eclipses and occultations occur separately. However, the same satellite pair will exhibit an eclipse and an occultation quasi-simultaneously under particular orbital configurations. This kind of rare event is termed as a quasi-simultaneous mutual event (QSME). During the 2021 campaign of mutual events of jovian satellites, we observed a QSME between Europa and Ganymede. The present study aims to describe and study the event in detail. We observed the QSME with a CCD camera attached to a 300-mm telescope at the Hong Kong Space Museum Sai Kung iObservatory. We obtained the combined flux of Europa and Ganymede from aperture photometry. A geometric model was developed to explain the light curve observed. Our results are compared with theoretical predictions (O-C). We found that our simple geometric model can explain the QSME fairly accurately, and the QSME light curve is a superposition of the light curves of an eclipse and an occultation. Notably, the observed flux drops are within 2.6% of the theoretical predictions. The size of the event central time O-Cs ranges from -14.4 to 43.2 s. Both O-Cs of flux drop and timing are comparable to other studies adopting more complicated models. Given the event rarity, model simplicity and accuracy, we encourage more observations and analysis on QSMEs to improve Solar System ephemerides.Comment: 23 pages, 5 appendixes, 16 figures, 7 table

    Polymer-Confined Colloidal Monolayer: A Reusable Soft Photomask for Rapid Wafer-Scale Nanopatterning

    No full text
    We demonstrate the repeated utilization of self-assembled colloidal spheres for rapid nanopattern generations. Highly ordered micro-/nanosphere arrays were interlinked and confined by a soft transparent polymer (polydimethylsiloxane, PDMS), which can be used as light-focusing elements/photomasks for area-selective exposures of photoresist in contact. Because of the stiffness of the colloidal spheres, the photomasks do not encounter feature-deformation problems, enabling reliable production of highly uniform patterns over large areas. The geometrical feature of the patterns, including the size, pitch, and even the shape, can be finely tuned by adjusting the mask design and exposure time. The obtained patterns could be used as deposition or etching mask, allowing easy pattern transfer for various applications

    A comparison of via-programmable gate array logic cell circuits

    No full text
    Via-programmable gate arrays (VPGAs) offer a middle ground application specific integrated circuits and field programmable arrays in terms of flexibility, manufactuing , speed, power and area. In this paper, we present a VPGA logic cell, the complementary universal logic (CULG) which can be used to implement both sequential combinatorial elements. Its performance is compared a number of other designs including transmission , differential cascode voltage switch with pass gate, standard cell. The CULG is found to have comparable delay product and process variation sensitivity to the other designs while offering the lowest power consumption. Copyright 2009 ACM.EI

    Students’ interaction anxiety and social phobia in interprofessional education in Hong Kong: mapping a new research direction

    No full text
    AbstractBackground Interprofessional education (IPE) has been promoted as a breakthrough in healthcare because of the impact when professionals work as a team. However, despite its inception dating back to the 1960s, its science has taken a long time to advance. There is a need to theorize IPE to cultivate creative insights for a nuanced understanding of IPE. This study aims to propose a research agenda on social interaction by understanding the measurement scales used and guiding researchers to contribute to the discussion of social processes in IPE.Method This quantitative research was undertaken in a cross-institutional IPE involving 925 healthcare students (Medicine, Nursing, Social Work, Chinese Medicine, Pharmacy, Speech Language Pathology, Clinical Psychology, Food and Nutritional Science and Physiotherapy) from two institutions in Hong Kong. Participants completed the Social Interaction Anxiety Scale (SIAS-6) and Social Phobia Scale (SPS-6). We applied a construct validation approach: within-network and between-network validation. We performed confirmatory factors analysis, t-test, analysis of variance and regression analysis.Results CFA results indicated that current data fit the a priori model providing support to within-network validity [RMSEA=.08, NFI=.959, CFI=.965, IFI=.965, TLI=.955]. The criteria for acceptable fit were met. The scales were invariant between genders, across year levels and disciplines. Results indicated that social interaction anxiety and social phobia negatively predicted behavioural engagement (F = 25.093, p<.001, R2=.065) and positively predicted behavioural disaffection (F = 22.169, p<.001, R2=.057) to IPE, suggesting between-network validity.Conclusions Our data provided support for the validity of the scales when used among healthcare students in Hong Kong. SIAS-6 and SPS-6 have sound psychometric properties based on students’ data in Hong Kong. We identified quantitative, qualitative and mixed methods research designs to guide researchers in getting involved in the discussion of students’ social interactions in IPE.Key MessagesThe Social Anxiety Scale (SIAS-6) and Social Phobia Scale (SPS-6) scales have sound psychometric properties based on the large-scale healthcare students’ data in IPE in Hong Kong.Social interaction anxiety and social phobia negatively predicted students’ behavioural engagement with IPE and positively predicted behavioural disaffection. The scales are invariant in terms of gender, year level and discipline.Quantitative, qualitative and mixed methods studies are proposed to aid researchers to contribute in healthcare education literature using the SIAS-6 and SPS-6
    corecore