205 research outputs found

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure

    A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter

    Full text link
    In this paper, we investigate analytically the level space of the imaginary part of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}. Padmanabhan presented a method to study analytically the imaginary part of quasinormal frequencies for a class of spherically symmetric spacetimes including Schwarzschild-de Sitter black holes which has an evenly spaced structure. The results show that the level space of scalar and gravitational quasinormal frequencies for this kind of black holes only depend on the surface gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We also extend the range of ww to w1w \leq -1, the results of which are similar to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid angle in accelerating universe will be a Schwarzschild-de Sitter black hole, fixing w=1w = -1 and ϵ2=0\epsilon^2 = 0. And a black hole with a deficit solid angle in the accelerating universe will be a Schwarzschild black hole,when ρ0=0\rho_0 = 0 and ϵ2=0\epsilon^2 = 0. In this paper, ww is the parameter of state equation, ϵ2\epsilon^2 is a parameter relating to a deficit solid angle and ρ0\rho_0 is the density of static spherically symmetrical quintessence-like matter at r=1r = 1.Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc

    Resonances in the three-neutron system

    Full text link
    A study of 3-body resonances has been performed in the framework of configuration space Faddeev equations. The importance of keeping a sufficient number of terms in the asymptotic expansion of the resonance wave function is pointed out. We investigated three neutrons interacting in selected force components taken from realistic nn forces.Comment: 38 pages, 11 tables, 4 figure

    Contribution of Color Information in Visual Saliency Model for Videos

    No full text
    International audienceMuch research has been concerned with the contribution of the low level features of a visual scene to the deployment of visual attention. Bottom-up saliency models have been developed to predict the location of gaze according to these features. So far, color besides to brightness, contrast and motion is considered as one of the primary features in computing bottom-up saliency. However, its contribution in guiding eye movements when viewing natural scenes has been debated. We investigated the contribution of color information in a bottom-up visual saliency model. The model efficiency was tested using the experimental data obtained on 45 observers who were eye tracked while freely exploring a large data set of color and grayscale videos. The two datasets of recorded eye positions, for grayscale and color videos, were compared with a luminance-based saliency model. We incorporated chrominance information to the model. Results show that color information improves the performance of the saliency model in predicting eye positions

    Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) 7a is an accessory protein with no known homologues. In this study, we report the interaction of a SARS-CoV 7a and small glutamine-rich tetratricopeptide repeat-containing protein (SGT). SARS-CoV 7a and human SGT interaction was identified using a two-hybrid system screen and confirmed with interaction screens in cell culture and cellular co-localization studies. The SGT domain of interaction was mapped by deletion mutant analysis and results indicated that tetratricopeptide repeat 2 (aa 125-158) was essential for interaction. We also showed that 7a interacted with SARS-CoV structural proteins M (membrane) and E (envelope), which have been shown to be essential for virus-like particle formation. Taken together, our results coupled with data from studies of the interaction between SGT and HIV-1 vpu indicated that SGT could be involved in the life-cycle, possibly assembly of SARS-CoV.IS

    Deep exclusive π+\pi^+ electroproduction off the proton at CLAS

    Get PDF
    The exclusive electroproduction of π+\pi^+ above the resonance region was studied using the CEBAF\rm{CEBAF} Large Acceptance Spectrometer (CLAS\rm{CLAS}) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS\rm{CLAS}, together with the high luminosity, allowed us to measure the cross section for the γpnπ+\gamma^* p \to n \pi^+ process in 140 (Q2Q^2, xBx_B, tt) bins: 0.16<xB<0.580.16<x_B<0.58, 1.6 GeV2<^2<Q2Q^2<4.5<4.5 GeV2^2 and 0.1 GeV2<^2<t-t<5.3<5.3 GeV2^2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.Comment: 18pages, 21figures,2table

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics
    corecore