56 research outputs found

    Types of Stem Cells in Regenerative Medicine: A Review

    Get PDF
    Two basic and clinical researches accomplished during the recent years on embryonic and adult stem cells constituted a mutation in regenerative therapy. These cells can be used for treating some degenerative diseases. Between them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson’s and Alzheimer’s diseases, arthritis and muscular, skin, lung, eye, and digestive disorders, aggressive and regressive cancers can be treated by cell therapies. This review focused on types of stem cells used in regenerative medicine

    TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling

    Get PDF
    Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration

    Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy

    Get PDF
    Radiotherapy is a highly effective tool for the treatment of brain cancer. However, radiation also causes detrimental effects in the healthy tissue, leading to neurocognitive sequelae that compromise the quality of life of brain cancer patients. Despite the recognition of this serious complication, no satisfactory solutions exist at present. Here we investigated the effects of intranasal administration of human mesenchymal stem cells (hMSCs) as a neuroprotective strategy for cranial radiation in mice. Our results demonstrated that intranasally delivered hMSCs promote radiation-induced brain injury repair, improving neurological function. This intervention confers protection against inflammation, oxidative stress, and neuronal loss. hMSC administration reduces persistent activation of damage-induced c-AMP response element-binding signaling in irradiated brains. Furthermore, hMSC treatment did not compromise the survival of glioma-bearing mice. Our findings encourage the therapeutic use of hMSCs as a non-invasive approach to prevent neurological complications of radiotherapy, improving the quality of life of brain tumor patients

    Agrárpiaci Jelentések, Baromfi

    Get PDF
    Amerikai Egyesült Államok agrárminisztériumának (USDA) májusban megjelent jelentése szerint az USA csirkehústermelése 4,6 millió tonna körül alakult 2017 első negyedévében, ami 2 százalékkal haladta meg az előző év azonos időszakának kibocsátását. Az Európai Bizottság adatai alapján 2017 első 20 hetében 178 euró/100 kilogramm volt az egész csirke uniós átlagára, kismértékben csökkent az előző év hasonló időszakának átlagárához viszonyítva. Magyarországon a vágócsirke élősúlyos termelői ára (245,9 forint/kilogramm) 4,3 százalékkal volt alacsonyabb 2017 20. hetében az egy évvel korábbinál

    Urocortin-2 Prevents Dysregulation of Ca2+ Homeostasis and Improves Early Cardiac Remodeling After Ischemia and Reperfusion

    Get PDF
    Aims: Urocortin-2 (Ucn-2) is a potent cardioprotector against Ischemia and Reperfusion (I/R) injuries. However, little is known about its role in the regulation of intracellular Ca2+ concentration ([Ca2+]i) under I/R. Here, we examined whether the addition of Ucn-2 in reperfusion promotes cardioprotection focusing on ([Ca2+]i handling.Methods and Results: Cardiac Wistar rat model of I/R was induced by transient ligation of the left coronary artery and experiments were conducted 1 week after surgery in tissue and adult cardiomyocytes isolated from risk and remote zones. We observed that I/R promoted significant alteration in cardiac contractility as well as an increase in hypertrophy and fibrosis in both zones. The study of confocal [Ca2+]i imaging in adult cardiomyocytes revealed that I/R decreased the amplitude of [Ca2+]i transient and cardiomyocytes contraction in risk and remote zones. Interestingly, intravenous infusion of Ucn-2 before heart’s reperfusion recovered significantly cardiac contractility and prevented fibrosis, but it didn’t affect cardiac hypertrophy. Moreover, Ucn-2 recovered the amplitude of [Ca2+]i transient and modulated the expression of several proteins related to [Ca2+]i homeostasis, such as TRPC5 and Orai1 channels. Using Neonatal Rat Ventricular Myocytes (NRVM) we demonstrated that Ucn-2 blunted I/R-induced Store Operated Ca2+ Entry (SOCE), decreased the expression of TRPC5 and Orai1 as well as their interaction in reperfusion.Conclusion: Our study provides the first evidences demonstrating that Ucn-2 addition at the onset of reperfusion attenuates I/R-induced adverse cardiac remodeling, involving the [Ca2+]i handling and inhibiting the expression and interaction between TRPC5 and Orai1

    Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging

    Get PDF
    An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals

    Cancer Genes Hypermethylated in Human Embryonic Stem Cells

    Get PDF
    Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation

    Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency: The role of DREAM in the maintenance of hESCs.

    Get PDF
    Journal Article;Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embryonic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a Ca(2+)-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.This work was supported by a nonprofit foundation ‘Fundación Progreso y Salud’ of the Andalusian Regional Ministry of Health; Consejería de Innovación Ciencia y Empresa, Junta de Andalucía and Fondo Europeo de Desarrollo Regional (FEDER) (CTS-6505; INP-2011-1615-900000 and P10-CVI-6095); Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FEDER) (RD12/0019/0028; PI10/00964 and PI14/01015); the Ministry of Health and Consumer Affairs (Advanced Therapies Program Grant TRA-120)Ye
    corecore