12 research outputs found

    Cellular HIV-1 DNA levels in patients receiving antiretroviral therapy strongly correlate with therapy initiation timing but not with therapy duration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viral reservoir size refers to cellular human immunodeficiency virus-1 (HIV-1) DNA levels in CD4<sup>+ </sup>T lymphocytes of peripheral blood obtained from patients with plasma HIV-1-RNA levels (viral load, VL) maintained below the detection limit by antiretroviral therapy (ART). We measured HIV-1 DNA levels in CD4<sup>+ </sup>lymphocytes in such patients to investigate their clinical significance.</p> <p>Methods</p> <p>CD4<sup>+ </sup>T lymphocytes were isolated from the peripheral blood of 61 patients with a VL maintained at less than 50 copies/ml for at least 4 months by ART and total DNA was purified. HIV-1 DNA was quantified by nested PCR to calculate the copy number per 1 million CD4<sup>+ </sup>lymphocytes (relative amount) and the copy number in 1 ml of blood (absolute amount). For statistical analysis, the Spearman rank or Wilcoxon signed-rank test was used, with a significance level of 5%.</p> <p>Results</p> <p>CD4 cell counts at the time of sampling negatively correlated with the relative amount of HIV-1 DNA (median = 33 copies/million CD4<sup>+ </sup>lymphocytes; interquartile range [IQR] = 7-123 copies/million CD4<sup>+ </sup>lymphocytes), but were not correlated with the absolute amounts (median = 17 copies/ml; IQR = 5-67 copies/ml). Both absolute and relative amounts of HIV-1 DNA were significantly lower in six patients in whom ART was initiated before positive seroconversion than in 55 patients in whom ART was initiated in the chronic phase, as shown by Western blotting. CD4 cell counts before ART introduction were also negatively correlated with both the relative and absolute amounts of HIV-1 DNA. Only the relative amounts of HIV-1 DNA negatively correlated with the duration of VL maintenance below the detection limit, while the absolute amounts were not significantly correlated with this period.</p> <p>Conclusions</p> <p>The amounts of cellular HIV-1 DNA in patients with VLs maintained below the detection limit by the introduction of ART correlated with the timing of ART initiation but not with the duration of ART. In addition, CD4<sup>+ </sup>T lymphocytes, which were newly generated by ART, diluted latently infected cells, indicating that measurements of the relative amounts of cellular HIV-1 DNA might be underestimated.</p

    Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model

    Get PDF
    Abstract Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01-0.05 % atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03-0.05 % atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02 %) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03 % of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease

    5-FU Metabolism in Cancer and Orally-Administrable 5-FU Drugs

    Get PDF
    5-Fluorouracil (5-FU) is a key anticancer drug that for its broad antitumor activity, as well as for its synergism with other anticancer drugs, has been used to treat various types of malignancies. In chemotherapeutic regimens, 5-FU has been combined with oxaliplatin, irinotecan and other drugs as a continuous intravenous infusion. Recent clinical chemotherapy studies have shown that several of the regimens with oral 5-FU drugs are not inferior compared to those involving continuous 5-FU infusion chemotherapy, and it is probable that in some regimens continuous 5-FU infusion can be replaced by oral 5-FU drugs. Historically, both the pharmaceutical industry and academia in Japan have been involved in the development of oral 5-FU drugs, and this review will focus on the current knowledge of 5-FU anabolism and catabolism, and the available information about the various orally-administrable 5-FU drugs, including UFT, S-1 and capecitabine. Clinical studies comparing the efficacy and adverse events of S-1 and capecitabine have been reported, and the accumulated results should be utilized to optimize the treatment of cancer patients. On the other hand, it is essential to elucidate the pharmacokinetic mechanism of each of the newly-developed drugs, to correctly select the drugs for each patient in the clinical setting, and to further develop optimized drug derivatives
    corecore