170 research outputs found

    Research Progress Reports, 1962. Fruit and Vegetable Processing and Technology Division, Department of Horticulture.

    Get PDF
    Tomato variety evaluation for processing, 1962 / W. A. Gould, J. R. Geisman and Wade Schulte -- Evaluation of snap bean varieties for processing, 1962 / Wilbur A. Gould -- Handling and holding studies of mechanically harvested tomatoes. 1. Processed product quality / W. A. Gould, W. D. Bash, J. R. Geisman, D. E. Yingst, G. A. Marlowe and W. N. Brown -- Handling and holding studies of mechanically harvested tomatoes. 2. Spore counts / Winston D. Bash and W. A. Gould -- Handling and holding studies of mechanically harvested tomatoes. 3. pH / Winston D. Bash and W. A. Gould -- Handling and holding studies of mechanically harvested tomatoes. 4. Chlorine residuals / Donald E. Yingst and W. A. Gould -- Removal of insects and residues from sweet corn by washing techniques / J. R. Geisman and W. A. Gould -- Removal of pesticides and radioactive fallout from fruits and vegetables / J. R. Geisman, R. P. Blackmore, R. W. Hirzel and W. S. Stinson -- The effect of apple variety and browning prevention treatments during preparation on the quality of frozen apple pies / D. Robert Davis and James F. Gallander -- Effect of three tomato peeling methods on efficiency and product quality / Wade A. Schulte and W. A. Gould -- Effects of cooling rates on vacuum of canned pumpkin / Winston D. Bash -- New flavors for sauerkraut / J. R. Geisman and Robert Reyda -- Flavor of tomato juice / Wilbur A. Gould, Natholyn Dalton and John Hal Johnson -- Fruit juice blends offer a promising new field for apple cider / D. Robert Davi

    Updating known distribution models for forecasting climate change impact on endangered species

    Get PDF
    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species’ distribution, instead of building new models that are based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS

    A multi-scale modelling framework to guide management of plant invasions in a transboundary context

    Get PDF
    Background Attention has recently been drawn to the issue of transboundary invasions, where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries. Robust modelling frameworks, able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species, are needed to study and manage invasions. Limitations due to the lack of species distribution and environmental data, or assumptions of modelling tools, often constrain the reliability of model predictions. Methods We present a multiscale spatial modelling framework for transboundary invasions, incorporating robust modelling frameworks (Multimodel Inference and Ensemble Modelling) to overcome some of the limitations. The framework is illustrated using Hakea sericea Schrad. (Proteaceae), a shrub or small tree native to Australia and invasive in several regions of the world, including the Iberian Peninsula. Two study scales were considered: regional scale (western Iberia, including mainland Portugal and Galicia) and local scale (northwest Portugal). At the regional scale, the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution, while the importance of each environmental predictor was assessed at the local scale. The potential distribution of H. sericea was spatially projected for both scale areas. Results Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain. Climate and landscape composition sets were the most important determinants of this regional distribution of the species. Conversely, a geological predictor (schist lithology) was more important in explaining its local-scale distribution. Conclusions After being introduced to Portugal, H. sericea has become a transboundary invader by expanding in parts of Galicia (Spain). The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion. This highlights the importance of transboundary cooperation in the early management of invasions. By reliably identifying drivers and providing spatial projections of invasion at multiple scales, this framework provides insights for the study and management of biological invasions, including the assessment of transboundary invasion risk.This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the project PTDC/AAGMAA/4539/2012 / FCOMP-01-0124-FEDER-027863 (IND_CHANGE). J. Vicente is supported by POPH/FSE funds and by National Funds through FCT - Foundation for Science and Technology through Post-doctoral grant SFRH/BPD/84044/2012. D.M. Richardson acknowledges support from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation (grant 85417).info:eu-repo/semantics/publishedVersio

    The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi

    Get PDF
    Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals

    Zinc homeostasis and signaling in health and diseases: Zinc signaling

    Get PDF
    The essential trace element zinc (Zn) is widely required in cellular functions, and abnormal Zn homeostasis causes a variety of health problems that include growth retardation, immunodeficiency, hypogonadism, and neuronal and sensory dysfunctions. Zn homeostasis is regulated through Zn transporters, permeable channels, and metallothioneins. Recent studies highlight Zn’s dynamic activity and its role as a signaling mediator. Zn acts as an intracellular signaling molecule, capable of communicating between cells, converting extracellular stimuli to intracellular signals, and controlling intracellular events. We have proposed that intracellular Zn signaling falls into two classes, early and late Zn signaling. This review addresses recent findings regarding Zn signaling and its role in physiological processes and pathogenesis

    Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat

    Get PDF
    Wheat is an important dietary source of zinc (Zn) and other mineral elements in many countries. Dietary Zn deficiency is widespread, especially in developing countries, and breeding (genetic biofortification) through the HarvestPlus programme has recently started to deliver new wheat varieties to help alleviate this problem in South Asia. To better understand the potential of wheat to alleviate dietary Zn deficiency, this study aimed to characterise the baseline effects of genotype (G), site (E), and genotype by site interactions (GxE) on grain Zn concentration under a wide range of soil conditions in India. Field experiments were conducted on a diverse panel of 36 Indian-adapted wheat genotypes, grown on a range of soil types (pH range 4.5–9.5), in 2013–14 (five sites) and 2014–15 (six sites). Grain samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The mean grain Zn concentration of the genotypes ranged from 24.9–34.8 mg kg-1, averaged across site and year. Genotype and site effects were associated with 10% and 6% of the overall variation in grain Zn concentration, respectively. Whilst G x E interaction effects were evident across the panel, some genotypes had consistent rankings between sites and years. Grain Zn concentration correlated positively with grain concentrations of iron (Fe), sulphur (S), and eight other elements, but did not correlate negatively with grain yield, i.e. no yield dilution was observed. Despite a relatively small contribution of genotype to the overall variation in grain Zn concentration, due to experiments being conducted across many contrasting sites and two years, our data are consistent with reports that biofortifying wheat through breeding is likely to be effective at scale given that some genotypes performed consistently across diverse soil types. Notably, all soils in this study were probably Zn deficient and interactions between wheat genotypes and soil Zn availability/management (e.g. the use of Zn-containing fertilisers) need to be better-understood to improve Zn supply in food systems

    Host-parasitoid spatial dynamics in heterogeneous landscapes

    No full text
    This paper explores the effect of spatial processes in a heterogeneous environment on the dynamics of a host-parasitoid interaction. The environment consists of a lattice of favourable (habitat) and hostile (matrix) hexagonal cells, whose spatial distribution is measured by habitat proportion and spatial autocorrelation (inverse of fragmentation). At each time step, a fixed fraction of both populations disperses to the adjacent cells where it reproduces following the Nicholson-Bailey model. Aspects of the dynamics analysed include extinction, stability, cycle period and amplitude, and the spatial patterns emerging from the dynamics. We find that, depending primarily on the fraction of the host population that disperses in each generation and on the landscape geometry, five classes of spatio-temporal dynamics can be objectively distinguished: spatial chaos, spirals, metapopulation, mainland-island and spiral fragments. The first two are commonly found in theoretical studies of homogeneous landscapes. The other three are direct consequences of the heterogeneity and have strong similarities to dynamic patterns observed in real systems (e.g. extinction-recolonisation, source-sink, outbreaks, spreading waves). We discuss the processes that generate these patterns and allow the system to persist. The importance of these results is threefold: first, our model merges into a same theoretical framework dynamics commonly observed in the field that are usually modelled independently. Second, these dynamics and patterns are explained by dispersal rate and common landscape statistics, thus linking in a practical way population ecology to landscape ecology. Third, we show that the landscape geometry has a qualitative effect on the length of the cycles and, in particular, we demonstrate how very long periods can be produced by spatial processes
    corecore