10 research outputs found

    A Comparison of Major Arable Production Systems: An Agronomic, Environmental and Ecological Evaluation

    Get PDF
    One of the primary challenges of our time is develop sustainable farming systems that can feed the world with minimal environmental impact. Some studies argue that organic farming systems are best because these have minimal impact on the environment and are positive for biodiversity. Others argue that no-tillage systems are better because such systems save energy and preserve soil structure and quality. A third group argues that conventional farming systems are best because yield per hectare is highest. However, so far, systematic comparisons of major arable production systems are rare and often it is difficult to compare the advantages and disadvantages of farming systems in a systematic way due to differences in soil/site characteristics and management. Here we present data of the Swiss Farming Systems and Tillage Experiment (FAST), a long term experiment where the main European arable production systems (organic and conventional farming, reduced tillage and no tillage, each system with different cover crop treatments) are being compared using a factorial replicated design. A multidisciplinary team of researchers from various disciplines and organizations analysed this experiment. We show the advantages and disadvantages of the various production systems and present data on plant yield, life cycle analysis, global warming potential, soil quality, plant root microbiomes and above and below ground biodiversity. Our results demonstrate that: i) plant yield was highest in the conventional systems, ii) soil biodiversity and above ground diversity tended to be higher in organic production systems, iii) soil erosion was lowest in the absence of tillage and in organic production systems, iv) the positive effects of cover crops were highest in organic production systems and increased with reduced land use intensity, v) the global warming potential of organic farming systems was lower compared to conventional systems, and vi) root and plant microbiome varied between the farming systems with the occurrence of indicator species that were specific for individual farming practices. In a next step we compared the results of this experiment with observations from a large farmers network (60 fields) in Switzerland (see abstract by Büchi et al.) where organic, conventional and conservation agriculture were compared. The results of our trial (e.g. yield and environmental performance of the different farming systems) were largely in agreement with those observed in the farmers network. Overall, our results indicate that no farming system is best and the choice of the “best” production system depends on economic, ecological and environmental priorities

    A variation of the social context in the warm-up period influences 18-month-olds’ imitation

    Get PDF
    The present study aimed to investigate how the prior social disposition of a model in a warm-up period influences 18-month-old infants’ subsequent imitation. Infants were randomly assigned to an interactive and social warm-up period (n = 19) or a non-interactive and non-social warm-up period (n = 19) with the model prior to the imitation task. They then participated in an imitation task with different types of actions: novel means actions, arbitrary vs. functional actions and necessary vs. unnecessary actions. An additional social warm-up control group (n = 14) and a non-social warm-up control group (n = 14) were recruited to assess the spontaneous production of the target actions in the absence of the demonstration. The results showed that infants in the experimental groups performed significantly more target actions than infants in the control groups, showing an imitation effect. Furthermore, the results of the experimental groups showed that the overall imitation performance of the target actions was higher in the social condition than in the non-social condition. This imitation enhancing effect of the social warm-up period held true for the novel means actions and functional vs. arbitrary actions, however not for the necessary vs. unnecessary actions. Implications of the results for theory and future studies are discussed in terms of infants’ social motivation and its relation to infants’ imitative behavior

    Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems

    No full text
    With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli, this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases

    Insights Into the Bifunctional Aphidicolan-16-Ăź-ol Synthase Through Rapid Biomolecular Modeling Approaches

    No full text
    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-Ăź-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-Ăź-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses

    DataSheet1.pdf

    No full text
    <p>Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-Ăź-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-Ăź-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.</p
    corecore