23 research outputs found

    The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients

    Get PDF
    Introduction: Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives: We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods: Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results: Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16-0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31 %). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions: This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients

    Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    Get PDF
    BackgroundSpoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon sequencing for quantification of bacterial spores in a canned food matrix and for monitoring the outgrowth of spoilage microbiota in a ready-to-eat food matrix.ResultsThe detection limit of bar-coded 16S rRNA amplicon sequencing was determined for the number of bacterial spores in a canned food matrix. Analysis of samples from a canned food matrix spiked with a mixture of equinumerous spores from the thermophiles, Geobacillus stearothermophilus and Geobacillus thermoglucosidans, and the mesophiles, Bacillus sporothermodurans, Bacillus cereus, and Bacillus subtilis, led to the detection of these spores with an average limit of 2 × 102 spores ml−1. The data were normalized by setting the number of sequences resulting from DNA of an inactivated bacterial species, present in the matrix at the same concentration in all samples, to a fixed value for quantitative sample-to-sample comparisons. The 16S rRNA amplicon sequencing method was also employed to monitor population dynamics in a ready-to-eat rice meal, incubated over a period of 12 days at 7 °C. The most predominant outgrowth was observed by the genera Leuconostoc, Bacillus, and Paenibacillus. Analysis of meals pre-treated with weak acids showed inhibition of outgrowth of these three genera. The specificity of the amplicon synthesis was improved by the design of oligonucleotides that minimize the amplification of 16S rRNA genes from chloroplasts originating from plant-based material present in the food.ConclusionThis study shows that the composition of complex spoilage populations, including bacterial spores, can be monitored in complex food matrices by bar-coded amplicon sequencing in a quantitative manner. In order to allow sample-to-sample comparisons, normalizations based on background DNA are described. This method offers a solution for the identification and quantification of spoilage microbiota, which cannot be cultivated under standard laboratory conditions. The study indicates variable detection limits among species of bacterial spores resulting from differences in DNA extraction efficiencies
    corecore