731 research outputs found

    Self-consistency in the Projected Shell Model

    Full text link
    The Projected Shell Model is a shell model theory built up over a deformed BCS mean field. Ground state and excited bands in even-even nuclei are obtained through diagonalization of a pairing plus quadrupole Hamiltonian in an angular momentum projected 0-, 2-, and 4-quasiparticle basis. The residual quadrupole-quadrupole interaction strength is fixed self-consistently with the deformed mean field and the pairing constants are the same used in constructing the quasiparticle basis. Taking 160Dy^{160}Dy as an example, we calculate low-lying states and compare them with experimental data. We exhibit the effect of changing the residual interaction strengths on the spectra. It is clearly seen that there are many Jπ=0+,1+,4+J^\pi = 0^+, 1^+, 4^+ bandheads whose energies can only be reproduced using the self-consistent strengths. It is thus concluded that the Projected Shell Model is a model essentially with no free parameters.Comment: 13 pages, 10 figures, submitted to Nuclear Physics

    The Hubbard model with smooth boundary conditions

    Full text link
    We apply recently developed smooth boundary conditions to the quantum Monte Carlo simulation of the two-dimensional Hubbard model. At half-filling, where there is no sign problem, we show that the thermodynamic limit is reached more rapidly with smooth rather than with periodic or open boundary conditions. Away from half-filling, where ordinarily the simulation cannot be carried out at low temperatures due to the existence of the sign problem, we show that smooth boundary conditions allow us to reach significantly lower temperatures. We examine pairing correlation functions away from half-filling in order to determine the possible existence of a superconducting state. On a 10×1010\times 10 lattice for U=4U=4, at a filling of n=0.87\langle n \rangle = 0.87 and an inverse temperature of β=10\beta=10, we did find enhancement of the dd-wave correlations with respect to the non-interacting case, a possible sign of dd-wave superconductivity.Comment: 16 pages RevTeX, 9 postscript figures included (Figure 1 will be faxed on request

    Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    Get PDF
    A pseudo shell SU(3) model description of normal parity bands in 159-Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompained by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values.Comment: 29 pages, 6 figure

    Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Get PDF
    The Quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in the Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In a recent work was shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible represntations (irreps) of SU(3) are needed to describe the Yrast band, the leading S = 0 irrep augmented with the leading S = 1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a "realistic but schematic" Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20-Ne, 22-Ne, 24-Mg and 28-Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the Yrast band and the importance of the various terms in the Hamiltonian.Comment: 30 pages, 8 figures. Submited to Nucl. Phys.

    How good are the Garvey-Kelson predictions of nuclear masses?

    Full text link
    The Garvey-Kelson relations are used in an iterative process to predict nuclear masses in the neighborhood of nuclei with measured masses. Average errors in the predicted masses for the first three iteration shells are smaller than those obtained with the best nuclear mass models. Their quality is comparable with the Audi-Wapstra extrapolations, offering a simple and reproducible procedure for short range mass predictions. A systematic study of the way the error grows as a function of the iteration and the distance to the known masses region, shows that a correlation exists between the error and the residual neutron-proton interaction, produced mainly by the implicit assumption that VnpV_{np} varies smoothly along the nuclear landscape.Comment: 10 pages, 18 figure

    A schematic model for QCD I: Low energy meson states

    Full text link
    A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.Comment: 29 pages, 6 figures. submitted to Phys. Rev.

    Nuclear masses and the number of valence nucleons

    Get PDF
    An improved version of the liquid drop model is presented. The addition of two terms, linear and quadratic in the total number of valence nucleons (particles or holes), improves the description of atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an compared with those of established models. (c) 2007 Elsevier B.V. All rights reserved

    Backbending in Dy isotopes within the Projected Shell Model

    Get PDF
    A systematic study of the yrast band in 154-164 Dy isotopes using the Projected Shell Model is presented. It is shown that, in the context of the present model, enlarging the mean field deformation by about 20 % allows a very good description of the spectrum of yrast band in these isotopes. The dependence of the B(E2) values on angular momentum is also better described when larger deformations are used. The observed oscillation of g-factors at low spin states remains an open question for this model.Comment: 17 pages, 7 figures, submitted to Phys. Rev.

    Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems

    Get PDF
    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situations and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtained. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio
    corecore