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Abstract
An improved version of the liquid drop model is presented. The addition of two terms, linear and
quadratic in the total number of valence nucleons (particles or holes), improves the description of
atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an

compared those of with established models.

PACS numbers:



I. INTRODUCTION

An accurate knowledge of nuclear masses is required to understand fundamental processes
in nuclear physics. The nuclear mass embodies the net results of all interactions present in
the nucleus. The binding energy BE is the difference between the sum of the masses of its
constituent free nucleons and the nuclear mass [1].

The study of nuclear mass formulae has a long history since Weizsacker[2], and Bethe
and Bacher[3] proposed a formula based on the liquid-drop model, by analogy to a primarily
classical system. They considered the nucleus as a very dense, charged liquid drop, where
the binding energy is proportional to the volume, i.e. to the mass number A, and is reduced
by surface and Coulomb effects. Adding the asymmetry term, and the pairing term leads to

the familiar form:

Z(Z -1) (N=2)* §(N.2)

BE(N,Z) = a,A — a,A*® — de—rm T  Avsym—— %= (1)

In Eq. (1) the conventional A~1/2

dependence of the pairing term is adopted [4—7], instead
of A=/3 form suggested in [8—11]. Numerical fits does not allow to distinguish between them.

In 1966 Myers and Swiatecki which proposed a liquid drop formula including shell and
deformation effects [8], which evolved into a macroscopic-microscopic global nuclear mass
formula in a collaboration with Moller, Nix and Treiner [9], and later on to the finite range
liquid-drop model (FRLDM)[10]. In their macroscopic sector, one contribution was the
separation of the asymmetry term in a volumetric and surface part. In 2003, Souza et al.[5]
incorporated these surface energy terms in their improved LDM (ILDM). An extra Coulomb
term, neglected in most models, was included to take into account corrections to the Coulomb
energy associated with the diffuseness of the nuclear surface (proton form-factor correction
to the Coulomb energy). The Royer and Gautier mass formula[7] includes a curvature energy
and the Wigner cusp, which refers to the extra binding energy present in nuclei with the same
number of protons and neutrons.

Danielewicz [6] has shown that, when the surface energy is affected by the particle asym-
metry within the system, thermodynamic consistency requires that some of the asymmetry

moves to the surface, i.e., an asymmetry skin develops. Minimization of the net nuclear



energy with respect to the partition of asymmetry produces an expression for the symmetry
energy such as in the droplet model[11]. Finally, he shows that the potentially confusing
expression for the asymmetry energy is easily comprehended using a capacitor analogy.

Including both surface and Wigner effects, the following extended formula [12] can be

written:
Z(Z 1) a AT(T +r)
. _ 2/3 _ vsym
BE(N,Z) = a,A— a A ac yOE 1+@A*1/3 2
(N, 2)
aP \/Z ' (2)

where T = |N — Z|/2. The Wigner term has a coefficient modulated by the parameter r.
It can take values between 0 and 4, which includes the absence of the Wigner term, r = 0,
and two symmetry limits: r = 1, the exact isospin symmetry associated with the SU(2)
Casimir T(T 4+ 1) and r = 4, the exact spin-isospin symmetry associated with SU(4) Casimir
T(T +4)[12].

Nuclear masses and charge radii have been calculated as algebraic functions of the number
of valence protons and neutrons [13-15], in a successful approach able to fit more the 2000
known masses with an r.m.s. error smaller than 400 keV, employing 28 parameters [15]. In
these mass formulas the numbers of valence particles and holes are employed simultaneously,
and even in the simplest versions the maximum between two different quantities, associated
with spherical and deformed nuclei, is taken [14]. Both facts make it hard to get an intuitive
interpretation of the different terms involved. In what follows it will be shown that, by adding
only two microscopic terms to the liquid drop model, which are linear and quadratic in the
number of valence particles (or holes), it is possible to adjust all known nuclear masses with
an rrm.s. of 1.2 MeV, a combination of simplicity and predictability which has been found
useful in global analysis [12]. Although it is still not competitive with the best mass formulas,
it represents a very simple approach, and can serve as a starting point for more sophisticated
models [16]. It is worth to mention that Ref. [14] contains a mass formula that is very close

to the one employed here, which allows a fit of nuclear masses with similar r.-m.s. error.



Il. MACROSCOPIC MASS FORMULA PLUS SHELL CORRECTIONS

The main motivation for the present work arose from the striking color-coded pattern
observed on the nuclear landscape when plotting the difference between the experimental

binding energies[17] and those calculated from Eq. (2) [12, 16, 18].
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FIG. 1: Residual differences between measured binding energies and those calculated using Eq. 2,

with a r.m.s. deviation of 2.40 MeVs

The reqgular pattern displayed in Fig. 1 exhibit the double magic closures as red marks,
appearing in those places where the macroscopic mass formula underestimates the binding
energies. The biding energy is maximal for those nuclei with N or Z equal to 14, 28, 50, 82
y 126. The pattern suggest to use 14 instead of 20 as a magic number. Around the double
closures “diamond like structures” can be observed. They can be parametrized employing
Fmax = (n, + ng)/2 [12], where n, (n;) is the number of valence neutron (proton) particles
or holes counted from the nearest closed shell. The notation comes from the counting of
bosons adopted in the neutron-proton interacting boson model[19]. At mid shells, circular
green areas are seen in Fig. 1, where experimental binding energies are smaller than those
predicted by Eq. 2.

The number of valence neutrons n, is defined by:

ny=N=Ng if N<Npeg, (3)

M= Ner— N if N> Npe, (4)



where we have introduced the closure magic numbers N.:
N. = 8, 14, 28,50, 82,126, 184,258, withc=1,2,3,...,8 (5)

and their midclosures:

Nmeg = 11,21, 39, 66, 104, 155, 221. (6)

Similar expressions hold for the number of valence protons n,. The use of 14 and the
exclusion of 20 as a magic number is strongly suggested by the pattern in Fig. 1, and the
quality of the fits obtained.

We want to improve the predictive power of Eq. 2 with the inclusion of two extra terms.
To keep their parameters as close as possible to its original values, the new terms should

have a null average contribution. To this goal their mean is removed by defining

n, + ng n, + Ny
F= - .
! < ! > %

i (nu;nw)2_<(nu-l2-nw)2> 8)

Introducing the semi-degeneracy n. of the shell number c as:

and

Nc+1 - Nc

Ne = 5 (9)

the mean of the valence nucleons can be expressed as:

(n,) = (ne) = & (10)
Ny + o\ () 4+ (n7) +2(n,) (nz)
() - . (1)
where
() = 212 (12)
() = 2 (13)

While the removal of their mean values guarantees that the microscopic terms will have

no average contribution when all nuclei between closed shells are included, when the analysis



is restricted to nuclei with measured masses the average value of these two terms is not zero.

To compensate for this effect a constant term is added to the complete mass formula, which

reads
Z(Z 1) a AT(T +r)
. _ 2/3 _ vsym
BE(N, Z) = avA asA dc AL/3 1+ zvsynvA,1/3 A
o(N, Z
+ ap% —arF 4+ arr FF 4 aconst (14)

The behavior of the linear term F and the quadratic one —F F, after the removal of their

average values, are exhibited in Figs. 2a, and 2b.

a) b)
FIG. 2: Behavior of the: a) linear term F; b) quadratic term —F F over the entire nuclear landscape

along the plane N - Z.

For Z < 50, N < 82 the linear term dominates over the quadratic, while for heavier nuclei

their contributions are comparable. The combined effect F — FF is shown in Fig. 3.
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FIG. 3: Shell corrections for a modified macroscopic version of the LDM, due to both terms F—FF.



IIl. RESULTS

In order to get an optimum fit of the coefficients of each formula, we use MINUIT[20],
which is conceived as a tool to find the minimum value of a multi-parameter function and
analyze the shape of the function around the minimum. The set of data to fit are the masses
given in the last Atomic Mass Evaluation[17], which lists atomic and not nuclear masses, the

relation between the two being given by
BEexp(N, Z) = BEAYE(N, Z) + Z[Be(Z = 1)]me — Bey(2) (15)

where B /(Z) is the total binding energy of the electrons, and its better approximation may

be obtained by using[1]
Be(Z) = 1.44381 x 10 °Z*% + 155468 x 10 27> MeV (16)

The parameters in the different mass formulas are adjusted to minimize the r.m.s deviation

o defined by
> (BEexp(N, Z) — BE(N, 2))’

2 N.Z
o = , 17
Nnucl ( )

which measures the quadratic error between the theoretical binding energies BE(N, Z) and

their experimental counterpart BEgxp(N, Z). Npuc is the total number of nuclei included in
the reference set. The parameters obtained after fitting the 2149 nuclei whose masses are
reported in the AMEOQ3 data set [17] and their respective r.m.s deviation ¢ are listed in Table
1.

The simplest liquid drop mass formula, Eq. (1), allows to fit all known nuclear masses with
an average error slightly smaller than 3.0 MeV. Adding surface asymmetry effects improves
the fit in 0.25 MeV, and the Wigner term in another 0.30 MeV.

Finally, its very striking that the inclusion of the two terms proportional to n, 4 n, improve
the global fit by 1.1 MeV, to a final r.m.s. error of 1.3 MeV.

While the coefficients of the volume, surface, Coulomb and pairing terms are fairly con-
stant, the asymmetry term is strongly affected by the presence of the surface and the Wigner
corrections, which means that these terms are strongly correlated. The constant aconr= -
0.2759 MeV simply corrects for the average contribution of the microscopic terms for all

nuclei with known masses.



COEFFICIENT|Eq. (1)|Eq. (2) |Eq. (2) |Eq. (14)
a, 15.671 | 15.714 | 15.454 | 15.454
as 17.701| 18.078 | 17.053 | 17.053
ac 0.7120| 0.7070 | 0.6891 | 0.6891
Avsym 23.077 | 27.206 | 44.507 | 44.507
dssym - | 25.145 | 6.9071 | 6.9071
ap 12.735 | 12.797 | 12.444 | 12.444
aconst - - - 1-0.2759
ar : _ . 1.3349
asr - - - | 0.0469
r : 0 | 22437 2.2437
o 2.9408 | 2.6921 | 2.4007 | 1.3317
mean -0.0722(-0.0359 | -0.0223| -0.0016

TABLE I: Coefficients [in MeV] for the different mass formulas

If the curvature term a,A'/3 and the Coulomb diffuseness

the global fit can be improved to 1.2 MeV [18].

. 2 .
correction ¢4 are included,

Fig. 4 displays the color-coded pattern of the residual differences between experimental

binding energies[17] and those calculated by using Eq. (14), which includes shell closure

effects. Notice that the scale runs between -2.0 and 2.0 MeV, amplifying small differences.

2.

82

FIG. 4: Residual differences on the N - Z plane, between measured binding energies and those

calculated using Eq. (14).

It is worth to mention that we have studied a generalized version of Eq. (14), including



microscopic contributions of the form alwnﬂ—l—ah,n,,%—agwnfr%—a,”,n,rnl,%—ag,,nﬁ. The numerical
results show that the best parameters satisfy a;, = a;, and a», & a», = ar,/2. It provides
a strong empirical support for the use of n, + n, as the microscopic variable. They can
interpreted the as isoscalar global monopole corrections to the binding energies which can be

extracted from a microscopic Hamiltonian [21].

IV. TESTS AND PREDICTIONS

A. AME95-03 test

In order to check the reliability of the nuclear mass formulas, we use the AME95 - AMEOQ3
test employed in Ref. [1]. It consists in selecting only the 1760 nuclei whose masses are
already included in the AME95 compilation[22], and predict the 389 nuclear masses which
are present in AMEQ3[17] but not in AMEQ5[22]. It should be stressed that, for the sake
of consistency, we always employ the AMEO3 data set, and use AME95 only to select the
restricted set of nuclei to be fitted.

The results of the reliability test applied to the different mass models are displayed in

Table II.
FORMULA AME95-AMEOQO3 TEST (r.m.s. in MeVs)
FITTED PREDICTED
Eq. (1) 2.7932 2.2148
Eq. (2) 2.4980 2.0697
Eq. (14) 1.3681 1.3185
Eq. (14) extended 1.2390 1.0751

TABLE II: Results for the Reliability tests

As seen in Table Il, all mass formulas are quite stable in their predictions, having an r.m.s.
deviation for the predicted nuclei smaller than the fitting error. The microscopic formulas,

Eq. (14) and its extension, have a deviation close to 1 MeV in the prediction.



B. Predictions up to the drip lines

Drip lines are the boundary beyond which neutron(proton)-rich nuclei are unstable against
neutron(proton) emission. In other words, the drip lines are the lines on the N-Z plane where
the neutron(proton) separation energy is zero. Thus, an unstable atomic nucleus beyond
the drip lines will leak free nucleons. In astrophysics, the neutron drip line is important in
discussions of nucleosynthesis and neutron stars.

Having showed that Eq. (14) successfully satisfies the AME95-03 test, it is relevant to
investigate its predictions up to the drip lines. Although binding energies are predicted with
a precision better than 1% by the simplest liquid drop mass formula, Eq. (1), its error is still
an order of magnitude too large for precise nucleosynthesis studies. One useful way to find
regions of stability is to substract to the mass predictions its own macroscopic part. The
microscopic differences will exhibit in an enhanced way the regions where binding energies
in a certain model are larger than its macroscopic estimation. It should be stressed that,
due to the strong differences in the asymmetry coefficients in the different mass formulas,
there is not such a thing as a “universal liquid drop model” to be substracted from all mass
predictions. The proper macroscopic prediction must be substracted in each model, which
can be obtained by the best fit of the LDM, Eq (1), of the theoretical binding energies
associated with each model.

In the case of Eq. (14), the microscopic prediction is simply included in the two terms
dependent on valence occupation numbers. They are shown in the left-hand side of Figs. 5
and 6. As expected from the discussion in the previous sections, the new stability regions for
superheavy nuclei predicted by the model are associated with the shell closures and midclo-
sures. In particular, the “diamond like” stability pattern is predicted to exist around '84Pb2%°,
155104259, 184126310 gnd 22110433%. Some of the are heavy double-magic nuclei, while some
others are mid-shell nuclei predicted as stable due to the presence of quadratic term.

For comparison we have selected two of the most successful macroscopic-microscopic
models: the Finite Range Droplet Model (FRDM) [10] and Duflo-Zuker (DZ) model [15].
For the FRDM the separation of macroscopic and microscopic contributions is performed by

the authors. The microscopic contribution is plotted in the right-hand side of Fig. 5. It is

10



remarkable that 184Pb2% is already predicted to be particularly stable, and the midshell nuclei
155104259 and 22110433® are also exhibited as relatively stable. However, the region of stable

nuclei around ¥4126319 is fairly spread.

8,

FIG. 5: Predictions up to the drip lines using our formula which includes shell corrections compared

with the FRDLM of Moller and Nix

In the DZ model with 28 parameters there is a macroscopic sector, but it is referred as
a base line, not a proper liquid drop, in Ref. [13, 14]. The microscopic corrections shown
in Fig. 6 were obtained removing a liquid drop calculation fitted to the DZ predictions.
The stability around 8*Pb?®° is already there, but instead of 155104259 the stability region is

displaced to a heavier region by about ten nucleons, both for protons and neutrons.

8. 8.

FIG. 6: Predictions up to the drip lines using our formula which includes shell corrections compared

with the Duflo and Zuker mass formula

As a further test of the present model, cubic terms in n, 4+ n, were included in a global fit.
The r.m.s. error did not exhibit any improvement. However, this cubic term has a negative
coefficient, which makes the quadratic contribution smoother, as shown in Fig. 7

The double closure at magic numbers and mid-shell closures seems to be robust predictions

of the present model. It would be expected that refined versions of this model, with r.m.s.
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FIG. 7: Predictions up to the drip lines using our formula which includes shell corrections up to

cubic terms

fitting capabilities closer to the FRDM and the DZ models, would have slight modifications,

but the islands of stability would remain where there are predicted now.

V. FINAL REMARKS

The study of the differences between experimental binding energies and those calculated
with macroscopic mass formulas, plotted on the plane N-Z over the entire nuclear landscape,
motivated the introduction of a simple parametrization which includes shell corrections by
using terms like (n, + n,)/2 to fit the nuclear landscape with a r.m.s. deviation of 1.3 MeV.

In order to retain the validity of the parameters fitted using the macroscopic expression,
Eq.(2), the average contributions of the microscopic terms were removed. Proceeding in
this way, we have obtained a r.m.s. deviation of 1.3 MeV starting from a formula that takes
into account the surface asymmetry and the Wigner term. When the curvature and the
correction to the Coulomb energy were added the fits improved by 100 keV[18].

The AME95 - AMEO3 test presented in the report of Lunney et al.[1] was applied success-
fully to the model predictions. Islands of stability were predicted for superheavy nuclei with
magic or mid-shell proton and neutron numbers. They were not far from the predictions of
more sophisticated models like the FRDM and DZ models. Having included the most relevant
shell corrections, the present model could serve as a basis for more elaborated techniques in

the quest for precise nuclear mass predictions.
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