1,781 research outputs found

    Detection of large scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys

    Get PDF
    The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies (II correlation) that could mimic the correlations due to lensing. A related possibility pointed out by Hirata and Seljak (2004) is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear (GI correlation). We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the SDSS, and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy- galaxy lensing (which otherwise swamps the GI correlation). While we find no detection of the II correlation, our results are nonetheless statistically consistent with recent detections found using the SuperCOSMOS survey. In contrast, we have a clear detection of GI correlation in galaxies brighter than L* that persists to the largest scales probed (60 Mpc/h) and with a sign predicted by theoretical models. This correlation could cause the existing lensing surveys at z~1 to underestimate the linear amplitude of fluctuations by as much as 20% depending on the source sample used, while for surveys at z~0.5 the underestimation may reach 30%. (Abridged.)Comment: 16 pages, matches version published in MNRAS (only minor changes in presentation from original version

    Gravitational lensing as a contaminant of the gravity wave signal in CMB

    Full text link
    Gravity waves (GW) in the early universe generate B-type polarization in the cosmic microwave background (CMB), which can be used as a direct way to measure the energy scale of inflation. Gravitational lensing contaminates the GW signal by converting the dominant E polarization into B polarization. By reconstructing the lensing potential from CMB itself one can decontaminate the B mode induced by lensing. We present results of numerical simulations of B mode delensing using quadratic and iterative maximum-likelihood lensing reconstruction methods as a function of detector noise and beam. In our simulations we find the quadratic method can reduce the lensing B noise power by up to a factor of 7, close to the no noise limit. In contrast, the iterative method shows significant improvements even at the lowest noise levels we tested. We demonstrate explicitly that with this method at least a factor of 40 noise power reduction in lensing induced B power is possible, suggesting that T/S=10^-6 may be achievable in the absence of sky cuts, foregrounds, and instrumental systematics. While we do not find any fundamental lower limit due to lensing, we find that for high-sensitivity detectors residual lensing noise dominates over the detector noise.Comment: 6 pages, 2 figures, submitted to PR

    Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    Get PDF
    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ∌13 000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameter

    Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    Get PDF
    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13 000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1–0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: M200p = (1.27 ±0.08)(N200/20)^1.20±0.09[LBCG/LBCG(N200)]^0.71±0.14 × 10^14 h ^−1M⊙, where LBCG(N200) is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters

    A Generalization of the Dade's Theorem on Localization of Injective Modules

    Get PDF

    Oscillations of Pseudo-Dirac Neutrinos and the Solar Neutrino Problem

    Full text link
    The oscillations of pseudo-Dirac neutrinos in matter are discussed and applied to the solar neutrino problem. Several scenarios such as both Μe\nu_e and ΜΌ\nu_{\mu} being pseudo-Dirac and only Μe\nu_e or ΜΌ\nu_{\mu} being pseudo-Dirac are examined. It is shown that the allowed region in the mass-mixing angle parameter space obtained by comparing the solar neutrino data with the calculations based on the standard solar model and the MSW effect is not unique. The results depend on the nature of neutrinos; for example, if both Μe\nu_e and ΜΌ\nu_{\mu} are pseudo-Dirac, the allowed region determined by the current solar neutrino data does not overlap with that obtained in the usual case of pure Dirac or Majorana neutrinos.Comment: 12 pages, 2 figures (not included

    Statistical-mechanical theory of ultrasonic absorption in molecular liquids

    Full text link
    We present results of theoretical description of ultrasonic phenomena in molecular liquids. In particular, we are interested in the development of microscopical, i.e., statistical-mechanical framework capable to explain the long living puzzle of the excess ultrasonic absorption in liquids. Typically, ultrasonic wave in a liquid can be generated by applying the periodically alternating external pressure with the angular frequency that corresponds to the ultrasound. If the perturbation introduced by such process is weak - its statistical-mechanical treatment can be done with the use of the linear response theory. We treat the liquid as a system of interacting sites, so that all the response/aftereffect functions as well as the energy dissipation and generalized (wave-vector and frequency dependent) ultrasonic absorption coefficient are obtained in terms of familiar site-site static and time correlation functions such as static structure factors or intermediate scattering functions. To express the site-site intermediate scattering functions we refer to the site-site memory equations in the mode-coupling approximation for the first-order memory kernels, while equilibrium properties such as site-site static structure factors, direct and total correlation functions are deduced from the integral equation theory of molecular liquids known as RISM or one of its generalizations. All the formalism is phrased in a general manner, hence the obtained results are expected to work for arbitrary type of molecular liquid including simple, ionic, polar, and non-polar liquids.Comment: 14 pages, 1 eps-figure, RevTeX4-forma

    Surface and volume effects in the photoabsorption of nuclei

    Full text link
    Recent experimental results for meson photoproduction from nuclei obtained with TAPS at MAMI are analyzed in view of the suppression of the second nucleon resonance region in total photoabsorption. The cross sections can be split into a component from the low density surface region of nuclei and a component which scales more like the nuclear volume. The energy dependence of the surface component is similar to the deuteron cross section, it shows a clear signal for the second resonance peak assigned to the excitation of the P11(1440), D13(1520), and S11(1535). The volume component behaves differently, it is lacking the second resonance peak and shows an enhancement at intermediate photon energies.Comment: accepted for publication in Eur. J. Phys.

    Entanglement and Nonunitary Evolution

    Get PDF
    We consider a collapsing relativistic spherical shell for a free quantum field. Once the center of the wavefunction of the shell passes a certain radius R, the degrees of freedom inside R are traced over. We show that an observer outside this region will determine that the evolution of the system is nonunitary. We argue that this phenomenon is generic to entangled systems, and discuss a possible relation to black hole physics.Comment: 14 pages, 1 figure; Added a clarification regarding the relation with black hole physic

    CMB Lensing Reconstruction on the Full Sky

    Get PDF
    Gravitational lensing of the microwave background by the intervening dark matter mainly arises from large-angle fluctuations in the projected gravitational potential and hence offers a unique opportunity to study the physics of the dark sector at large scales. Studies with surveys that cover greater than a percent of the sky will require techniques that incorporate the curvature of the sky. We lay the groundwork for these studies by deriving the full sky minimum variance quadratic estimators of the lensing potential from the CMB temperature and polarization fields. We also present a general technique for constructing these estimators, with harmonic space convolutions replaced by real space products, that is appropriate for both the full sky limit and the flat sky approximation. This also extends previous treatments to include estimators involving the temperature-polarization cross-correlation and should be useful for next generation experiments in which most of the additional information from polarization comes from this channel due to sensitivity limitations.Comment: Accepted for publication in Phys. Rev. D; typos correcte
    • 

    corecore