73 research outputs found

    Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    Get PDF
    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented

    Long-Term Winter Inversion Properties in a Mountain Valley of the Western United States and Implications on Air Quality

    Get PDF
    Because of the geography of a narrow valley and surrounding tall mountains, Cache Valley (located in northern Utah and southern Idaho) experiences frequent shallow temperature inversions that are both intense and persistent. Such temperature inversions have resulted in the worst air quality in the nation. In this paper, the historical properties of Cache Valley’s winter inversions are examined by using two meteorological stations with a difference in elevation of approximately 100 m and a horizontal distance apart of ~4.5 km. Differences in daily maximum air temperature between two stations were used to define the frequency and intensity of inversions. Despite the lack of a long-term trend in inversion intensity from 1956 to present, the inversion frequency increased in the early 1980s and extending into the early 1990s but thereafter decreased by about 30% through 2013. Daily mean air temperatures and inversion intensity were categorized further using a mosaic plot. Of relevance was the discovery that after 1990 there was an increase in the probability of inversions during cold days and that under conditions in which the daily mean air temperature was below −15°C an inversion became a certainty. A regression model was developed to estimate the concentration of past particulate matter of aerodynamic diameter ≤ 2.5 μm (PM2.5). The model indicated past episodes of increased PM2.5 concentrations that went into decline after 1990; this was especially so in the coldest of climate conditions

    Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    Get PDF
    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California’s climate not only through its warm and cold phases but also its precursor patterns

    Estimating Actual Evapotranspiration from Stony-Soils in Montane Ecosystems

    Get PDF
    Quantification of evapotranspiration (ET) is crucial for understanding the water balance and for efficient water resources planning. Agricultural settings have received most attention regarding ET measurements while less knowledge is available for actual ET (ETA) in natural ecosystems, many of which have soils containing significant amounts of stones. This study is focused on modelling ETA from stony soil, particularly in montane ecosystems where we estimate the contribution of stone content on water retention properties in soil. We employed a numerical model (HYDRUS-1D) to simulate ETA in natural settings in northern Utah and southern Idaho during the 2015 and 2016 growing seasons based on meteorological and soil moisture measurements at a range of depths. We simulated ETA under three different scenarios, considering soil with (i) no stones, (ii) highly porous stones, and (iii) negligibly porous stones. The simulation results showed significant overestimation of ETA when neglecting stones in comparison to ETA measured by eddy covariance. ETA estimates with negligibly porous stones were lower for all cases due to the decrease in soil water storage compared with estimates made considering highly porous stones. Assumptions of highly porous or negligibly porous stones led to reductions in simulated ETA of between 10% and 30%, respectively, compared with no stones. These results reveal the important role played by soil stones, which can impact the water balance by altering available soil moisture and thus ETA in montane ecosystems

    Intercomparison of Nine Micrometeorological Stations during the BEAREX08 Field Campaign

    Get PDF
    Land–atmosphere interactions play a critical role in regulating numerous meteorological, hydrological, and environmental processes. Investigating these processes often requires multiple measurement sites representing a range of surface conditions. Before these measurements can be compared, however, it is imperative that the differences among the instrumentation systems are fully characterized. Using data collected as a part of the 2008 Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08), measurements from nine collocated eddy covariance (EC) systems were compared with the twofold objective of 1) characterizing the interinstrument variation in the measurements, and 2) quantifying the measurement uncertainty associated with each system. Focusing on the three turbulent fluxes (heat, water vapor, and carbon dioxide), this study evaluated the measurement uncertainty using multiple techniques. The results of the analyses indicated that there could be substantial variability in the uncertainty estimates because of the advective conditions that characterized the study site during the afternoon and evening hours. However, when the analysis was limited to nonadvective, quasi-normal conditions, the response of the nine EC stations were remarkably similar. For the daytime period, both the method of Hollinger and Richardson and the method of Mann and Lenschow indicated that the uncertainty in the measurements of sensible heat, latent heat, and carbon dioxide flux were approximately 13 W m‒2, 27 W m‒2, and 0.10 mg m‒2 s‒1, respectively. Based on the results of this study, it is clear that advection can greatly increase the uncertainty associated with EC flux measurements. Since these conditions, as well as other phenomena that could impact the measurement uncertainty, are often intermittent, it may be beneficial to conduct uncertainty analyses on an ongoing basis

    Influence of wind direction on the surface roughness of vineyards

    Get PDF
    Remote sensing-based models are the most viable means of collecting the high-resolution spatially distributed estimates of evaporative water loss needed to manage irrigation and ensure the effective use of limited water resources. However, due to the unique canopy structure and configuration of vineyards, these models may not be able to adequately describe the physical processes driving evapotranspiration from vineyards. Using data collected from 2014 to 2016 as a part of the Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX), the twofold objective of this study was to (1) identify the relationship between the roughness parameters, zero-plane displacement height (do) and roughness length for momentum (zo), and local environmental conditions, specifically wind direction and vegetation density and (2) determine the effect of using these relationships on the ability of the remote sensing-based Two-Source Energy Balance (TSEB) model to estimate the sensible (H) and latent (λE) heat fluxes. Although little variation in do was identified during the growing season, a well-defined sigmoidal relationship was observed between zo and wind direction. When the output from a version of the TSEB model incorporating these relationships (TSEBVIN) was compared to output from the standard model (TSEBSTD), there were large changes to the roughness parameters, particularly zo, but only modest changes in the turbulent fluxes. When the output from TSEBVIN was compared to that of a version using a parameterization scheme representing open canopies (TSEBOPN), the mean absolute difference between the estimates of do and zo were 0.44 m and 0.25 m, respectively. While these values represent differences in excess of 45%, the turbulent fluxes differed by just 13 W m−2 or 10%, on average. The results suggest that the TSEB model is largely insensitive to changes in the roughness parameters for the range in roughness values evaluated in this study. This also suggests that the requirement for highly accurate roughness values has limited utility in the application of the TSEB model in vineyard systems. Since there is no significant advantage to using the more complex TSEBOPN and TSEBVIN models, it is recommended that the standard model be used.info:eu-repo/semantics/acceptedVersio

    Empirical and Modeling Analyses of the Circulation Influences on California Precipitation Deficits

    Get PDF
    Amplified and persistent ridges in western North America are recurring features associated with drought conditions in California. The recent drought event (2012–2016) lasted through both La Niña and El Niño episodes, suggesting additional climate drivers are important in addition to the commonly perceived El Niño-Southern Oscillation. Diagnostic analyses presented here suggest that, while the Pacific North American (PNA) and North Pacific Oscillation (NPO) do not directly cause drought in California, the relationships between them and with the upper air circulation pattern do modulate the spatial drought pattern. The positive PNA relative circulation leads drier northern California, and (-NPO) relative circulation leads southern California to be drier. The types of drought in this region emerge mostly from the combination of two PNA and NPO relative oceanic and atmospheric oscillations. At present, climate model projections do not indicate any significant change in these particular drought-modulating processes

    Estimation of Surface Thermal Emissivity in a Vineyard for UAV Microbolometer Thermal Cameras Using NASA HyTES Hyperspectral Thermal, and Landsat and AggieAir Optical Data

    Get PDF
    Microbolometer thermal cameras in UAVs and manned aircraft allow for the acquisition of highresolution temperature data, which, along with optical reflectance, contributes to monitoring and modeling of agricultural and natural environments. Furthermore, these temperature measurements have facilitated the development of advanced models of crop water stress and evapotranspiration in precision agriculture and heat fluxes exchanges in small river streams and corridors. Microbolometer cameras capture thermal information at blackbody or radiometric settings (narrowband emissivity equates to unity). While it is customary that the modeler uses assumed emissivity values (e.g. 0.99– 0.96 for agricultural and environmental settings); some applications (e.g. Vegetation Health Index), and complex models such as energy balance-based models (e.g. evapotranspiration) could benefit from spatial estimates of surface emissivity for true or kinetic temperature mapping. In that regard, this work presents an analysis of the spectral characteristics of a microbolometer camera with regard to emissivity, along with a methodology to infer thermal emissivity spatially based on the spectral characteristics of the microbolometer camera. For this work, the MODIS UCBS Emissivity Library, NASA HyTES hyperspectral emissivity, Landsat, and Utah State University AggieAir UAV surface reflectance products are employed. The methodology is applied to a commercial vineyard agricultural setting located in Lodi, California, where HyTES, Landsat, and AggieAir UAV spatial data were collected in the 2014 growing season. Assessment of the microbolometer spectral response with regards to emissivity and emissivity modeling performance for the area of study are presented and discussed

    Tower and Aircraft Eddy Covariance Measurements of Water Vapor, Energy, and Carbon Dioxide Fluxes during SMACEX

    Get PDF
    Abstract A network of eddy covariance (EC) and micrometeorological flux (METFLUX) stations over corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] canopies was established as part of the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) in central Iowa during the summer of 2002 to measure fluxes of heat, water vapor, and carbon dioxide (CO2) during the growing season. Additionally, EC measurements of water vapor and CO2 fluxes from an aircraft platform complemented the tower-based measurements. Sensible heat, water vapor, and CO2 fluxes showed the greatest spatial and temporal variability during the early crop growth stage. Differences in all of the energy balance components were detectable between corn and soybean as well as within similar crops throughout the study period. Tower network–averaged fluxes of sensible heat, water vapor, and CO2 were observed to be in good agreement with area-averaged aircraft flux measurements

    Implications of Soil and Canopy Temperature Uncertainty in the Estimation of Surface Energy Fluxes Using TSEB2T and High-Resolution Imagery in Commercial Vineyards

    Get PDF
    Estimation of surface energy fluxes using thermal remote sensing–based energy balance models (e.g., TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar radiation, as well as vegetation cover and accurate land surface temperature (LST). The physically based Two-source Energy Balance with a Dual Temperature (TSEB2T) model separates soil and canopy temperature (Ts and Tc) to estimate surface energy fluxes including Rn, H, LE, and G. The estimation of Ts and Tc components for the TSEB2T model relies on the linear relationship between the composite land surface temperature and a vegetation index, namely NDVI. While canopy and soil temperatures are controlling variables in the TSEB2T model, they are influenced by the NDVI threshold values, where the uncertainties in their estimation can degrade the accuracy of surface energy flux estimation. Therefore, in this research effort, the effect of uncertainty in Ts and Tc estimation on surface energy fluxes will be examined by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil temperatures. The spatial information used is available from multispectral imagery acquired by the AggieAir sUAS Program at Utah State University over vineyards near Lodi, California as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The results indicate that LE is slightly sensitive to the uncertainty of NDVIs and NDVIc. The observed relative error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc uncertainty, the relative error was between -2.2% and 1.2%. However, when the combined NDVIs and NDVIc uncertainties were used simultaneously, the domain of the observed relative error corresponding to the absolute values of |ΔLE| was between 0% and 4%
    • …
    corecore