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ABSTRACT 

Estimation of surface energy fluxes using thermal remote sensing–based energy balance models (e.g., 
TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar 
radiation, as well as vegetation cover and accurate land surface temperature (LST). The physically based Two-source 
Energy Balance with a Dual Temperature (TSEB2T) model separates soil and canopy temperature (Ts and Tc) to 
estimate surface energy fluxes including Rn, H, LE, and G. The estimation of Ts and Tc components for the TSEB2T 
model relies on the linear relationship between the composite land surface temperature and a vegetation index, namely 
NDVI. While canopy and soil temperatures are controlling variables in the TSEB2T model, they are influenced by the 
NDVI threshold values, where the uncertainties in their estimation can degrade the accuracy of surface energy flux 
estimation. Therefore, in this research effort, the effect of uncertainty in Ts and Tc estimation on surface energy fluxes 
will be examined by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil 
temperatures. The spatial information used is available from multispectral imagery acquired by the AggieAir 
sUAS Program at Utah State University over vineyards near Lodi, California as part of the ARS-USDA Agricultural 
Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) 
project. The results indicate that LE is slightly sensitive to the uncertainty of NDVIs and NDVIc. The observed relative 
error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc uncertainty, the relative 
error was between -2.2% and 1.2%. However, when the combined NDVIs and NDVIc uncertainties were used 
simultaneously, the domain of the observed relative error corresponding to the absolute values of |∆LE| was between 
0% and 4%. 

Keywords: TSEB2T, surface energy fluxes, land surface temperature (LST), soil and canopy temperature (Ts, Tc), 
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1. INTRODUCTION 

Evapotranspiration (ET) is a key component for hydrology and agricultural water management. Accurate 
estimation of ET is essential for a better understanding of the interactions between water and energy cycles 1, climate 
change 2, droughts 3, and plant growth 4. Most water in the hydrological cycle is consumed through ET, which returns 
approximately 70 percent of precipitation on land to the atmosphere 5. For irrigated agriculture, ET is considered a key 
indicator for quantifying crop water demand, irrigation scheduling, and vegetation stress 6. Many approaches have been 
developed for measuring actual ET, including eddy covariance flux towers 7, lysimeters 8, and scintillometers 9; 
however, use of these methods is limited to point measurement with an assumption of surface homogeneity, which is 
unlikely to be the case in reality 10,11. On the other hand, the use of indirect measurements, such as Bowen ratio stations 
and evaporative pans, is limited to small areas and entails considerable labor 12.  

Nowadays, the advent of remote sensing technology using a variety of platforms can provide an unprecedented 
opportunity to produce spatiotemporal ET information at different spatial scales spanning from sub-meters to 
kilometers. However, ET is not sensed directly but instead requires a combination of ground observations and remotely 
sensed data, from satellites, aircraft, or sUAS 13, and is grounded in the theory behind the surface energy balance model. 
The applications and validation of these models involve the micrometeorological inputs of air temperature, wind speed, 
water vapor pressure and incoming solar radiation, as well as vegetation cover and accurate land surface temperature 
(LST). For energy balance models such as TSEB, LST is considered a critical component that is strongly coupled to 
ET estimates. From an operational applications perspective, local information could present some challenges in those 
models, particularly the LST, which is not routinely available. Moreover, the spatial LST information obtained from 
remote sensors might have some degree of uncertainty due to atmospheric effects, surface emissivity, calibration issues, 
and radiometer viewing angle 6. Prata et al. 1995 14 pointed out that LST changes rapidly due to high spatial 
heterogeneity in the land surface characteristics such as soil, vegetation, and topography 15. Therefore, surface energy 
fluxes, and in particular LE, could be highly influenced as LST and micro-meteorological conditions together could 
render the approaches that rely on surface-air differences. 

Estimating ET with the uncertainty in LST over heterogeneous areas remains a challenging task as LST is 
commonly known to exhibit high temporal-spatial variation.  Kustas and Norman 1996 16 indicated that LST must be 
retrieved at an accuracy of 1 K or less to better understand the earth system and achieve ET accuracy less than 10%. 
However, aside from the spatial variability of emissivity, atmospheric effects make it difficult to perform the models 
with that accuracy 17. While several models have been developed to estimate ET based on the energy balance approach, 
it can be difficult to apply these models without accurate LST retrieval. In surface energy balance models such as TSEB, 
separation between canopy and soil temperatures (Tc and Ts, respectively) is needed for quantifying the ET components: 
evaporation (E) and transpiration (T).  

The impact of LST uncertainty on ET retrieval using remote sensing models has rarely been studied. This is true 
particularly for the Two-source Energy Balance with a Dual Temperature (TSEB2T) model, which requires Tc and Ts 
components, derived from LST, as key inputs. As described in section (2.2), threshold values of NDVIs and NDVIc are 
the main variables used to determine Tc and Ts in the relationship of LST-NDVI 18. Depending on the LST-NDVI 
relationship, small changes in these variables could result in changes to the Tc and Ts values. This implies that an 
accurate estimation for NDVIs and NDVIc is needed to calculate Tc and Ts with less uncertainty. In this research effort, 
the sensitivity analysis is performed to evaluate the response of the TSEB2T model to changes in the temperature 
components involving canopy and soil temperature (Tc and Ts, respectively). Of particular interest is how the sensitivity 
of these parameters (Tc and Ts) changes with changes in the threshold values of NDVI (NDVIc and NDVIs). The model 
is applied over vineyards: a complex environment domain in which Tc and Ts vary considerably. Other parameters, 
including meteorological conditions and crop and soil characteristics, remain the same with no change.   

 

 

2. METHODOLOGY 
2.1 Study area 

As illustrated in Figure (1), the experimental work has been conducted over a wine grape vineyard located near 
Lodi, California (38.290 N, 121.120 W) 19,20 with an area of approximately 62 ha. The study area involves one vineyard 
blocks (north) that is part of the Sierra Loma vineyard ranch, owned by McMannis Winery 21 and managed by Pacific 
Agri-Lands Management in cooperation with E&J Gallo Winery. The plantation structure of the vine rows has an east–
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west orientation with a row width of 3.35 m (11 feet). A cover crop grows in the interrows, occupying ~ 2 m, with bare 
soil strips along the vine rows spanning ~ 0.7 m. The vine height varies between 2 m and 2.5 m above ground level 
(agl), and vine biomass is concentrated mainly in the upper half of the vine canopy height. The actual vine canopy 
width varies spatially and temporally due to vine management practices. The study site has been a part of the Grape 
Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPeX) program for several years. This 
program is conducted as a collaboration between the Agricultural Research Service in USDA, E&J Gallo Winery, Utah 
State University, University of California in Davis, and others 22,23. 

A flight campaign was conducted by the AggieAir sUAS Program at Utah State University 
(https://uwrl.usu.edu/aggieair/). High-resolution, multispectral data were acquired for the entire field using sUAS 
during the growing season. Optical data, including red, blue, green, and near infrared bands, were acquired at 10-cm 
spatial resolution. Thermal data were acquired using a microbolometer camera 24 during the same flight and were 
radiometrically calibrated using the procedures discussed in Torres 2017 25. 

 

 

Figure 1. Layout of study area in Lodi, California, locations of north EC tower and example of 90% of EC footprint at 
Landsat time for August 09, 2014. 

 

 

2.2 Model Overview 

The TSEB model was originally developed by Norman et al 1995 26 and has undergone several revisions to 
improve representation of the radiative and convective exchange between the canopy and soil system and the lower 
atmosphere 10,26. The main concept behind the TSEB2T approach is to partition the radiative and turbulent fluxes 
between canopy and soil. In this case, sensible heat flux (H) is partitioned between soil and canopy and relies mainly 
on Tc and Ts differences with the overlying atmosphere. As shown in Figure (2), the TSEB2T model separates Rn, H, 
and LE between vegetation and soil. The equations below are the mathematical expressions used to describe the 
TSEB2T model 
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R୬ ൌ LE ൅ H ൅ G, (1) 

R୬ୡ ൌ Hୡ ൅ LEୡ, (2) 

R୬ୱ ൌ Hୱ ൅ LEୱ ൅ G, (3) 

 

Figure 2. Schematic representation of TSEB2T model 

where Rn is the net radiation, H is the sensible heat flux, LE is the latent heat flux, and G is the soil heat flux. 
All units of fluxes are in W/m2. Ts and Tc are the soil and canopy temperature, respectively, derived from the LST and 
high enough resolution of optical data. Subscripts of c and s represent the canopy and soil components, respectively. 
LEc and LEs are solved as residuals when (Tc and Ts) observations are available. 

Key inputs of TSEB are Ts and Tc, LAI, fc, wc/hc, and hc to parameterize the radiative and convective flux 
exchanges between soil/substrate and canopy. Other micro-meteorological data are also needed to run the model. The 
TSEB model was recommended by 27 after comparing different remote sensing ET models. The results indicated that 
TSEB is a better model for ET estimation compared to others because it is less sensitive to roughness parameters. This 
low sensitivity to roughness parameters was recently verified for vineyards by Alfieri et al. 2019 28. The TSEB model 
has been extensively tested for years over agroecosystems 29,30,31, natural ecosystems 32,33, and wetlands 34,35. 

The TSEB2T approach is a contextual TSEB that estimates Ts and Tc from composite LST imagery using the 
relationship between vegetation index (VI) and LST, particularly LST-NDVI, to extract Ts and Tc within a spatial 
domain, which was 3.6 m x 3.6 m for this study. Ts and Tc are calculated by averaging the temperature of pixels that 
are considered pure soil/substrate and pure canopy in a contextual spatial domain as shown in the two dimensional plot 
of the LST-NDVI relationship (see Figure. 2). The value of each pixel within the 3.6-m grid is assigned based on Tc 
and Ts and corresponds to the average temperature of areas considered pure vegetation and bare soil, respectively, at a 
0.6-m spatial resolution. Threshold NDVI values of both soil/substrate and canopy (NDVIs and NDVIc, respectively) 
are used to classify the pixels of soil or canopy. NDVIs is determined by constructing a relationship between NDVI and 
the LAI curve when LAI in the interrows is nearly zero. On the other hand, NDVIc is detected using the mean value of 
pixels identified as pure vegetation in a binary (soil-vegetation) classification of a multispectral image. In cases of very 
dense vegetation where pure soil pixels do not exist or with sparse vegetation lacking pure vegetation pixels inside the 
spatial domain, a linear fit between LST and NDVI can be developed where Ts and Tc can be estimated as described in 
Figure (2).  
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2.3 Monte Carlo Simulation 

Sensitivity analysis (SA) techniques are usually carried out to identify whether a perturbation of parameters 
has a significant influence on the response of the model, that is, on the variable of interest. Wagener et al. 2001 36 
pointed out that the low sensitivity of the model to any parameter can be simplified by replacing the parameters with 
constant values. The literature showed that sensitivity analysis is a standard step in any modelling study, but various 
updates continue to be carried out regularly to improve the SA techniques 37,38. In this study, Monte Carlo (MC) analysis 
was used to generate a random selection of 1000 values of NDVIc and NDVIs thresholds. MC methods are defined as 
a subset of computational algorithms that rely on repeated random sampling to model outcomes in a process driven by 
uncertain factors. The uses of MC are incredibly varied and have led to number of groundbreaking discoveries in several 
fields.   

The algorithm for this study has been designed to work as follows. First, threshold values of NDVIs and NDVIc 
were randomly selected by creating a uniform distribution using Python programming. Uniform random selection, 
which assumes the values are equally distributed between a lower and upper boundary, has been used because the mean 
and the standard deviation to construct a Gaussian statistical distribution are unknown. Moreover, as indicated by Irmak 
et al. 2006 39, no standard sensitivity analysis or common procedure has been proposed in previous studies for 
computing the sensitivity for any climate variable. For each iteration, a random selection for NDVIs and NDVIc is 
performed to calculate Tc and Ts as described in section (2.2).  The selections are then used as inputs for the TSEB2T 
model. The main outputs of the TSEB2T model are the energy fluxes (Rn, H, LE and G) and other ancillary data. Each 
individual LE map obtained from the model is then multiplied by the weighted EC footprint/source area to obtain a 
single value for LE. After a few iterations of this procedure, multiple LE values are calculated and then compared 
against the true LE value measured by the EC tower.  

2.4 Statistical Evaluation of Uncertainty 

Statistics have been used to evaluate the impact of uncertainty associated with NDVI on LE estimation using MC 
simulation and TSEB2T. Meanwhile, these statistical measurements are helpful tools that can be used for quantifying 
the uncertainty /relative error associated with the model outputs, mainly LE. The main statistics involve the relative 
difference of NDVIs (∆NDVIs), the relative difference of NDVIc (∆NDVIc), the relative difference of LE (∆LE), and 
the combined relative difference of NDVIs and NDVIc (∆NDVI୘). The mathematical expressions used for calculating 
each statistical measurement are shown as follows: 

∆LE ൌ
LEୱ െ LE୭

LE୭
ൈ 100 (4) 

∆NDVIୱ ൌ
NDVIୱୱ െ NDVIୱ୘

NDVIୱ୘
ൈ 100 (5) 

∆NDVIୡ ൌ
NDVIୡୱ െ NDVIୡ୘

NDVIୡ୘
ൈ 100 (6) 

∆NDVI୘ ൌ ට∆NDVIୱ
ଶ ൅ ∆NDVIୡ

ଶ (7) 

where LEୱ is the simulated latent heat flux, and LE୭ is the observed latent heat flux. All units of fluxes are W/m2. 
NDVIୱୱ and NDVIୡୱare the simulated NDVIs and NDVIc, respectively. NDVIୱ୘ and NDVIୱ୘ are the true value of NDVIs 
and NDVIc, respectively. ∆NDVI୘ is the total relative difference combining ∆NDVIs and ∆NDVIc.  
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3. RESULTS 

3.1 NDVIs sensitivity analysis 

In the first scenario, the sensitivity analysis was performed only for NDVIs without a change in the NDVIc 
value. To do that, 1000 MC simulations were used to model the probabilistic uncertainty of LE due to the uncertainty 
associated with NDVIs (see Figure (3)). The results indicate that LE most likely follows a uniform distribution similar 
to the NDVIs as shown in Figure (4), where the values range between 316 W/m2 and 326 W/m2. Although, the model 
considers all possible values of NDVIs under uncertainty conditions (0.3 – 0.4), the model shows very low variability 
in LE values. This implies that the uncertainty in NDVIs is slightly influencing LE values when using the TSEB2T 
model.  

 

Figure 3. Histogram of NDVIs iterations using MC simulation. Vertical dash line is the NDVIs typical value used for 
soil temperature estimation. 

 

 

Figure 4. Histogram of LE values using MC simulation and TSEB2T model due to NDVIs uncertainty. Vertical dash line is the 
resulting LE value using the typical NDVIs value. 

On the other hand, to quantify the error in LE with respect to uncertainty in NDVIs, a relationship between 
∆LE and ∆NDVIs was built as shown in Figure (5). The pattern between the two variables (∆LE and ∆NDVIs) appears 
to be linear with determination coefficient (R2) accounting for ~1. The results indicate that the NDVIs range of 
uncertainty is between -18% and 9%, while LE varies from -1% to 2%. The slope of the ∆LE-∆NDVIs regression line 
indicates that a 6% change in ∆NDVIs is associated with a -1% change in ∆LE. This means that the change in ∆LE is 
relatively small compared with the rate of change in ∆NDVIs. 
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Figure 5. Relationship between ∆LE and ∆NDVIs. 

3.2 NDVIc sensitivity analysis 

In the second scenario, the uncertainty analysis was considered only for NDVIc with no change in NDVIs. The 
value of NDVIs was set at 0.37 according to the relationship between NDVI and LAI, while the simulated NDVIc values 
were selected randomly between (0.65 and 0.8) using 1000 MC iterations (see Figure (6)). The results illustrated in 
Figure (7) show low variability in LE due to changes in NDVIc, with values ranging between 312 W/m2 and 324 W/m2. 
This implies that LE is slightly sensitive to the uncertainty associated with NDVIc. Meanwhile, as shown in Figure (7), 
the results indicate that LE behaves like a uniform distribution similar to the NDVIc distribution.  

 

Figure 6. Histogram of NDVIc iterations using MC simulation. Vertical dash line is the NDVIc typical value used for soil 
temperature estimation. 
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Figure 7. Histogram of LE values using MC simulation and TSEB2T model due to NDVIc uncertainty. Vertical dash line is the 
resulting LE value using the typical NDVIc value. 

 

For a better understanding of the impact of uncertainty in NDVIc on the estimation of LE, a relationship 
between ∆LE and ∆NDVIc was established as shown in Figure(8). The results demonstrate a strong linear relationship 
between ∆LE and ∆NDVIc, with R2 of nearly 1 and a slope equal to 0.06. This implies that a 6% change in ∆NDVIc is 
associated with a 1% change in ∆LE using the TSEB2T model. As shown in Figure (8), the uncertainty in NDVIc ranges 
from -14% to 7%, resulting in a relative error in the estimation of LE varying between -2.2% and 1.2%.  

 

Figure 8. Relationship between ∆LE and ∆NDVIc. 

3.3 Combined Uncertainty of NDVIs and NDVIc 

In the last scenario, a sensitivity analysis was conducted to examine the simultaneous effect of NDVIs and 
NDVIc on LE estimate using 1000 MC simulations. The simulated values of NDVIs were set between 0.3 and 0.4, and 
the NDVIc values were chosen between 0.65 and 0.8. The random selection for the simulation follows a continuous 
uniform distribution as shown in Figure (9) and Figure (10). As a result, the TSEB2T model indicates some degree of 
uncertainty in the LE estimate (see Figure (11)); however, the range of values is small, equaling 20 W/m2. As displayed 
in Figure (11), the probabilistic uncertainty of LE is most likely a Gaussian distribution with mean and standard 
deviation accounting for 320 W/m2 and 4.32 W/m2, respectively. On the other hand, according to the boxplot illustrated 
at the bottom of Figure (11), 50% of the LE values were found to be located between 317 W/m2 and 323 W/m2, with 
the true value at nearly 320 W/m2. This implies that combining the uncertainty of NDVIs and NDVIc has little effect on 
LE estimation using the TSEB2T model. 
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Figure 9. Histogram of NDVIs iterations using MC simulation. Vertical dash line is the NDVIs typical value used for soil 
temperature estimation. 

 

 

Figure 10. Histogram of NDVIc iterations using MC simulation. Vertical dash line is the NDVIc typical value used for soil 
temperature estimation. 

 

Figure 11. Histogram of LE values using MC simulation and TSEB2T model due to NDVIT uncertainty. Vertical dash line is the 
resulting LE value using the typical NDVIs and NDVIc values. 

Moreover, to measure the impact of the magnitude of NDVIc and NDVIs uncertainty components, the 
relationships of ∆LE vs. ∆NDVIs and ∆LE vs. ∆NDVIs were established separately. As shown in Figure (12), the results 
indicate that the uncertainty of NDVIs ranges between -18% and 9%, resulting in the relative error in LE varying from 
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-3% to 3%. Although the uncertainty range of NDVIs is larger than NDVIc, the relative error domain associated with 
LE gives the same results. This implies that LE is more sensitive to changes in NDVIc than NDVIs. 

 

 

Figure 12. Relationship between ∆LE (top) and ∆NDVIs  and ∆LE and ∆NDVIc (bottom). 

As demonstrated in Figure (13), the combined/total uncertainty associated with NDVI (hereafter called 
NDVIT) is calculated and evaluated against the absolute ∆LE (|∆LE|). A high variation in |∆LE| occurs as the value of 
NDVIT increases. Although, the range of NDVIT is wide, varying from 0% to 20%, the domain of relative error in LE 
values is small, ranging between 0% and 4%. Meanwhile, the results indicate that a 1% change in ∆NDVIT yields a 
change in |∆LE| of less than 0.25%.  

A 

B 
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Figure 13. Relationship between |∆LE| and ∆NDVIT . 

 

4. CONCLUSION 

The objective of this study was to evaluate the effect of uncertainty in Ts and Tc estimation on surface energy 
fluxes, mainly LE, by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil 
temperatures. In this study, three scenarios have been considered for analysis, with 1000 MC simulations performed 
for each scenario to generate the probabilistic distribution of NDVI thresholds. The first scenario was a sensitivity 
analysis performed only for NDVIs with no change in the NDVIc value. In the second scenario, the uncertainty analysis 
was considered only for NDVIc with no change in NDVIs. In the last scenario, the sensitivity analysis was conducted 
to examine the combined effect of NDVIs and NDVIc simultaneously. In the first two scenarios, the results indicate the 
uncertainty associated with NDVIs or NDVIc is influencing LE values only slightly using the TSEB2T model. The 
observed relative error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc 
uncertainty, the relative error was between -2.2% and 1.2%. Meanwhile, the results indicate that a 6% change rate in 
∆NDVIs is associated with a -1% change in ∆LE. However, due to NDVIc uncertainty, a 6% change in ∆NDVIc causes 
a 1% change in ∆LE using TSEB2T model. Based on the results obtained from the third scenario, a high variation in 
|∆LE| occurs as the value of NDVIT increases. Although, the range of NDVIT is wide, varying from 0% to 20%, the 
domain of relative error for the absolute values of LE is small, ranging between 0% and 4%. Meanwhile, the results 
show that a 1% change in ∆NDVIT yields a change in |∆LE| of less than 0.25%.  

The results of this analysis indicate that an exact number for NDVI thresholds is not necessary for the TSEB2T 
model, as long these values are estimated with a certain accuracy. This finding does not represent different ET models 
where NDVI thresholds are used (e.g. METRIC, SEBAL, NDVI-Kc), therefore  a similar analysis would be necessary 
for these. 

 

 

 

 

 

 

 

 

Proc. of SPIE Vol. 11414  114140F-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Funding: Funding provided by E.&J. Gallo Winery. Utah Water Research Laboratory contributed towards the 
acquisition and processing of the ground truth and UAV imagery data collected during GRAPEX IOPs. We would like 
to acknowledge the financial support for this research from NASA Applied Sciences-Water Resources Program and 
the USDA Non Assistance Cooperative Agreement 58-8042-5-092 funding. USDA is an equal opportunity provider 
and employer. 

Acknowledgments: We would like to thank Aggieair Service Center team (Ian Gowing, Mark Winkelaar, and Shannon 
Syrstad) for their extraordinary support in this research, whose cooperation greatly improved the data collection and 
data processing, and the staff of the Viticulture, Chemistry and Enology Division of E.&J. Gallo Winery for their 
assistance in the collection and processing of field data during GRAPEX IOPs. This project would not have been 
possible without the cooperation of Mr. Ernie Dosio of Pacific Agri Lands Management, along with the Sierra Loma 
vineyard staff, for logistical support of GRAPEX field and research activities. The authors would like to thank Carri 
Richards for editing this paper.   

Conflicts of Interest: The authors declare no conflict of interest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proc. of SPIE Vol. 11414  114140F-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

5. REFERENCES 

[1] Talsma, Carl, Stephen Good, Diego Miralles, Joshua Fisher, Brecht Martens, Carlos Jimenez, and Adam Purdy. 
2018. “Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models.” Remote Sensing. 
https://doi.org/10.3390/rs10101601. 

[2] Sun, Zhigang, Qinxue Wang, Ochirbat Batkhishig, and Zhu Ouyang. 2016. “Relationship between 
Evapotranspiration and Land Surface Temperature under Energy- and Water-Limited Conditions in Dry and Cold 
Climates.” Advances in Meteorology. https://doi.org/10.1155/2016/1835487. 

[3] Anderson, Martha C., Christopher Hain, Brian Wardlow, Agustin Pimstein, John R. Mecikalski, and William P. 
Kustas. 2011. “Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the 
Continental United States.” Journal of Climate. https://doi.org/10.1175/2010jcli3812.1. 

[4] Alberto, Ma Carmelita R., James R. Quilty, Roland J. Buresh, Reiner Wassmann, Sam Haidar, Teodoro Q. Correa, 
and Joseph M. Sandro. 2014. “Actual Evapotranspiration and Dual Crop Coefficients for Dry-Seeded Rice and 
Hybrid Maize Grown with Overhead Sprinkler Irrigation.” Agricultural Water Management. 
https://doi.org/10.1016/j.agwat.2014.01.005. 

[5] “National Water Summary 1987: Hydrologic Events and Water Supply and Use.” 1990. 
https://doi.org/10.3133/wsp2350. 

[6] Kustas, William P., Joseph G. Alfieri, Martha C. Anderson, Paul D. Colaizzi, John H. Prueger, Steven R. Evett, 
Christopher M. U. Neale, et al. 2012. “Evaluating the Two-Source Energy Balance Model Using Local Thermal 
and Surface Flux Observations in a Strongly Advective Irrigated Agricultural Area.” Advances in Water 
Resources. https://doi.org/10.1016/j.advwatres.2012.07.005. 

[7] Swinbank, W. C. 1951. “THE MEASUREMENT OF VERTICAL TRANSFER OF HEAT AND WATER VAPOR 
BY EDDIES IN THE LOWER ATMOSPHERE.” Journal of Meteorology. 
https://doi.org/2.0.co;2">10.1175/1520-0469(1951)008<0135:tmovto>2.0.co;2. 

[8] Angus, W. O. Pruitt And D. E., and W. O. Pruitt and D. E. Angus. 1960. “Large Weighing Lysimeter for Measuring 
Evapotranspiration.” Transactions of the ASAE. https://doi.org/10.13031/2013.41105. 

[9] Meijninger, W. M. L., A. E. Green, O. K. Hartogensis, W. Kohsiek, J. C. B. Hoedjes, R. M. Zuurbier, and H. A. 
R. De Bruin. 2002. “Determination of Area-Averaged Water Vapour Fluxes with Large Aperture and Radio Wave 
Scintillometers over a Heterogeneous Surface – Flevoland Field Experiment.” Boundary-Layer Meteorology. 
https://doi.org/10.1023/a:1019683616097. 

[10] Nassar, Ayman; Alfonso Torres-Rua, William Kustas, Hector Nieto, Mac McKee, Lawrence Hipps, David Stevens, 
et al. 2020. “Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy 
Balance Model and sUAS Imagery in Vineyards.” Remote Sensing. https://doi.org/10.3390/rs12030342. 

[11] Elhag, Mohamed, Aris Psilovikos, Ioannis Manakos, and Kostas Perakis. 2011. “Application of the Sebs Water 
Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over 
the Nile Delta.” Water Resources Management. https://doi.org/10.1007/s11269-011-9835-9. 

[12] McShane, Ryan R., Katelyn P. Driscoll, and Roy Sando. 2017. “A Review of Surface Energy Balance Models for 
Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large 
Extents.” Scientific Investigations Report. https://doi.org/10.3133/sir20175087. 

[13] McKee, Mac, Alfonso F. Torres-Rua, Mahyar Aboutalebi, Ayman Nassar, Calvin Coopmans, William P. Kustas, 
Feng Gao, Nicholas Dokoozlian, Luis Sanchez, and Maria M. Alsina. 2019. “Challenges That beyond-Visual-Line-
of-Sight Technology Will Create for UAS-Based Remote Sensing in Agriculture (Conference Presentation).” 
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. 
https://doi.org/10.1117/12.2520248. 

[14] Prata, A. J., V. Caselles, C. Coll, J. A. Sobrino, and C. Ottlé. 1995. “Thermal Remote Sensing of Land Surface 
Temperature from Satellites: Current Status and Future Prospects.” Remote Sensing Reviews. 
https://doi.org/10.1080/02757259509532285. 

[15] Neteler, Markus. 2010. “Estimating Daily Land Surface Temperatures in Mountainous Environments by 
Reconstructed MODIS LST Data.” Remote Sensing. https://doi.org/10.3390/rs1020333. 

Proc. of SPIE Vol. 11414  114140F-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

[16] Kustas, W. P., and J. M. Norman. 1996. “Use of Remote Sensing for Evapotranspiration Monitoring over Land 
Surfaces.” Hydrological Sciences Journal. https://doi.org/10.1080/02626669609491522. 

[17] Li, Zhao-Liang, Bo-Hui Tang, Hua Wu, Huazhong Ren, Guangjian Yan, Zhengming Wan, Isabel F. Trigo, and 
José A. Sobrino. 2013. “Satellite-Derived Land Surface Temperature: Current Status and Perspectives.” Remote 
Sensing of Environment. https://doi.org/10.1016/j.rse.2012.12.008. 

[18] Nassar, Ayman; Nieto, Hector; Aboutalebi, Mahyar; TorresRue, Alfonso; McKee, Mac; Kustas, William; Prueger, 
John; McKee, Lynn; Alfieri, Joseph; Hipps, Lawrence; et al. Pixel Resolution Sensitivity Analysis for the 
Estimation of Evapotranspiration Using the Two Source Energy Balance Model and sUAS Imagery under 
Agricultural Complex Canopy Environments; American Geophysical Union (AGU): Washington, DC, USA, 2018 

[19] Nassar, Ayman; Torres-Rua, Alfonso; Alfieri, Joseph; Hipps, Lawrence; Prueger, John; Nieto, Hector; Alsina, 
Maria; McKee, Lynn; White, William; Kustas, William; McKee, Mac; Coopmans, Calvin; Sanchez, Luis; 
Dokoozlian, N. Assessment of High-Resolution Daily Evapotranspiration Models Using Instantaneous sUAS ET 
in Grapevine Vineyards; American Geophysical Union (AGU): California, USA, 2019 

[20] Nassar, Ayman; Torres-Rua, Alfonso; McKee, Mac; Kustas, William; Coopmans, Calvin; Nieto, Hector; Hipps, 
Lawerence. Assessment of UAV Flight Times for Estimation of Daily High Resolution Evapotranspiration in 
Complex Agricultural Canopy Environments. UCOWR/NIWR Annual Water Resources Conference: Utah, USA, 
2019 

[21] McKee, Mac, Ayman Nassar, Alfonso Torres-Rua, Mahyar Aboutalebi, and William Kustas. 2018. “Implications 
of Sensor Inconsistencies and Remote Sensing Error in the Use of Small Unmanned Aerial Systems for Generation 
of Information Products for Agricultural Management.” Proceedings of SPIE The International Society for Optical 
Engineering 10664 (July). https://doi.org/10.1117/12.2305826. 

[22] Nassar, Ayman, Alfonso F. Torres-Rua, Joseph G. Alfieri, Lawrence E. Hipps, John H. Prueger, Hector Nieto, 
Maria Mar Alsina, et al. 2020. “To What Extend Does the Eddy Covariance Footprint Cutoff Influence the 
Estimation of Surface Energy Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in 
Commercial Vineyards? (Conference Presentation).” Autonomous Air and Ground Sensing Systems for 
Agricultural Optimization and Phenotyping V. https://doi.org/10.1117/12.2558777. 

[23] Nassar, Ayman, Alfonso F. Torres-Rua, Hector Nieto, Joseph G. Alfieri, Lawrence E. Hipps, John H. Prueger, 
Maria M. Alsina, et al. 2020. “Implications of Soil and Canopy Temperature Uncertainty in the Estimation of 
Surface Energy Fluxes Using TSEB2T and High-Resolution Imagery in Commercial Vineyards (Conference 
Presentation).” Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V. 
https://doi.org/10.1117/12.2558715. 

[24] Torres-Rua, Alfonso F., Mahyar Aboutalebi, Timothy Wright, Ayman Nassar, Pierre Guillevic, Lawrence Hipps, 
Feng Gao, et al. 2019. “Estimation of Surface Thermal Emissivity in a Vineyard for UAV Microbolometer Thermal 
Cameras Using NASA HyTES Hyperspectral Thermal, and Landsat and AggieAir Optical Data.” Autonomous Air 
and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. 
https://doi.org/10.1117/12.2518958. 

[25] Torres-Rua, Alfonso. 2017. “Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation 
of Radiometric Land Surface Temperature.” Sensors  17 (7). https://doi.org/10.3390/s17071499. 

[26] Norman, J. M., W. P. Kustas, and K. S. Humes. 1995. “Source Approach for Estimating Soil and Vegetation Energy 
Fluxes in Observations of Directional Radiometric Surface Temperature.” Agricultural and Forest Meteorology. 
https://doi.org/10.1016/0168-1923(95)02265-y. 

[27] Chirouze, J., G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, et al. 2014. “Intercomparison 
of Four Remote-Sensing-Based Energy Balance Methods to Retrieve Surface Evapotranspiration and Water Stress 
of Irrigated Fields in Semi-Arid Climate.” Hydrology and Earth System Sciences 18 (3): 1165–88. 

[28] Alfieri, Joseph G., William P. Kustas, Hector Nieto, John H. Prueger, Lawrence E. Hipps, Lynn G. McKee, Feng 
Gao, and Sebastian Los. 2019. “Influence of Wind Direction on the Surface Roughness of Vineyards.” Irrigation 
Science. https://doi.org/10.1007/s00271-018-0610-z. 

Proc. of SPIE Vol. 11414  114140F-14
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

[29] Kustas, W. P., J. G. Alfieri, H. Nieto, T. G. Wilson, F. Gao, and M. C. Anderson. 2019. “Utility of the Two-Source 
Energy Balance (TSEB) Model in Vine and Interrow Flux Partitioning over the Growing Season.” Irrigation 
Science. https://doi.org/10.1007/s00271-018-0586-8. 

[30] Bigeard, Guillaume, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel 
Jarlan. n.d. “Evapotranspiration Monitoring Based on Thermal Infrared Data over Agricultural Landscapes: 
Comparison of a Simple Energy Budget Model and a SVAT Model.” https://doi.org/10.5194/hess-2018-295. 

[31] Kustas, William, and Martha Anderson. 2009. “Advances in Thermal Infrared Remote Sensing for Land Surface 
Modeling.” Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2009.05.016. 

[32] Yang, Yongmin, Jianxiu Qiu, Renhua Zhang, Shifeng Huang, Sheng Chen, Hui Wang, Jiashun Luo, and Yue Fan. 
2018. “Intercomparison of Three Two-Source Energy Balance Models for Partitioning Evaporation and 
Transpiration in Semiarid Climates.” Remote Sensing. https://doi.org/10.3390/rs10071149. 

[33] Andreu, Ana, William Kustas, Maria Polo, Arnaud Carrara, and Maria González-Dugo. 2018. “Modeling Surface 
Energy Fluxes over a Dehesa (Oak Savanna) Ecosystem Using a Thermal Based Two-Source Energy Balance 
Model (TSEB) I.” Remote Sensing. https://doi.org/10.3390/rs10040567. 

[34] Yao, Wei, Min Han, and Shiguo Xu. 2010. “Estimating the Regional Evapotranspiration in Zhalong Wetland with 
the Two-Source Energy Balance (TSEB) Model and Landsat7/ETM Images.” Ecological Informatics. 
https://doi.org/10.1016/j.ecoinf.2010.06.002. 

[35] Anderson, Martha, Feng Gao, Kyle Knipper, Christopher Hain, Wayne Dulaney, Dennis Baldocchi, Elke 
Eichelmann, et al. 2018. “Field-Scale Assessment of Land and Water Use Change over the California Delta Using 
Remote Sensing.” Remote Sensing. https://doi.org/10.3390/rs10060889. 

[36] Wagener, T., D. P. Boyle, M. J. Lees, H. S. Wheater, H. V. Gupta, and S. Sorooshian. 2001. “A Framework for 
Development and Application of Hydrological Models.” Hydrology and Earth System Sciences. 
https://doi.org/10.5194/hess-5-13-2001. 

[37] Razavi, Saman, and Hoshin V. Gupta. 2016. “A New Framework for Comprehensive, Robust, and Efficient Global 
Sensitivity Analysis: 1. Theory.” Water Resources Research. https://doi.org/10.1002/2015wr017558. 

[38] Pianosi, Francesca, and Thorsten Wagener. 2015. “A Simple and Efficient Method for Global Sensitivity Analysis 
Based on Cumulative Distribution Functions.” Environmental Modelling & Software. 
https://doi.org/10.1016/j.envsoft.2015.01.004. 

[39] Irmak, Suat, José O. Payero, Derrel L. Martin, Ayse Irmak, and Terry A. Howell. 2006. “Sensitivity Analyses and 
Sensitivity Coefficients of Standardized Daily ASCE-Penman-Monteith Equation.” Journal of Irrigation and 
Drainage Engineering. https://doi.org/10.1061/(asce)0733-9437(2006)132:6(564). 

 

Proc. of SPIE Vol. 11414  114140F-15
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


