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ABSTRACT  

Microbolometer thermal cameras in UAVs and manned aircraft allow for the acquisition of high-

resolution temperature data, which, along with optical reflectance, contributes to monitoring and 

modeling of agricultural and natural environments. Furthermore, these temperature measurements 

have facilitated the development of advanced models of crop water stress and evapotranspiration in 

precision agriculture and heat fluxes exchanges in small river streams and corridors. Microbolometer 

cameras capture thermal information at blackbody or radiometric settings (narrowband emissivity 

equates to unity). While it is customary that the modeler uses assumed emissivity values (e.g. 0.99–

0.96 for agricultural and environmental settings); some applications (e.g. Vegetation Health Index), 

and complex models such as energy balance-based models (e.g. evapotranspiration) could benefit 

from spatial estimates of surface emissivity for true or kinetic temperature mapping. In that regard, 

this work presents an analysis of the spectral characteristics of a microbolometer camera with regard 

to emissivity, along with a methodology to infer thermal emissivity spatially based on the spectral 
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characteristics of the microbolometer camera. For this work, the MODIS UCBS Emissivity Library, 

NASA HyTES hyperspectral emissivity, Landsat, and Utah State University AggieAir UAV surface 

reflectance products are employed. The methodology is applied to a commercial vineyard agricultural 

setting located in Lodi, California, where HyTES, Landsat, and AggieAir UAV spatial data were 

collected in the 2014 growing season. Assessment of the microbolometer spectral response with 

regards to emissivity and emissivity modeling performance for the area of study are presented and 

discussed.  

Keywords: Thermal emissivity, land surface temperature, UAV, microbolometer camera, NASA 

HYTES, MODIS Emissivity, Landsat 

1. INTRODUCTION  

A major goal of thermal remote sensing is the estimation of the true (kinetic) surface temperature due 

to its usefulness in diverse applications such as modeling energy balance 1–6, vegetation conditions 7,8, 

environmental stressors effects, and climate change 9–11. The importance of thermal remote sensing in 

agriculture has been demonstrated at scales from global to regional and from farm to sub-plant, the 

latter scale being addressed by infrared temperature sensors 12 and microbolometer cameras 13,14. 

Infrared sensors and microbolometer cameras differ from the technologies used in satellite missions. 

The main difference is the lack of “cooling” mechanisms to maintain the sensor at a constant operating 

temperature. Microbolometer cameras require additional procedures to stabilize the operation 

conditions before and during use, thus avoiding “drift” conditions that are difficult to correct/adjust 

after data collection 15–17. Furthermore, infrared sensors and microbolometer cameras have, by design, 

different spectral characteristics 18–20, making them distinct from the spectral characteristics from 

scientific satellite missions (Landsat, MODIS, ASTER, ECOSTRESS) 21–25 as seen in Figure 1. 
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Figure 1. Spectral Response of the average Atmospheric Transmissivity, Landsat 8 Band 10 and ICI 9640-P26 
Microbolometer Camera Relative Spectral Response in the 7 to 14 um region. Notice the spectral width of Landsat 
Band 10 vs ICI.  

As shown in Fig.1, due to its spectral response, any microbolometer camera will be affected by 

the reduction in atmospheric transmissivity at the beginning and end of the spectral thermal 

windows and, additionally, by the significant atmospheric absorption due to Ozone molecules 

(“dip” in atmospheric transmissivity between 9 and 10 um). Furthermore, Landsat and other 

scientific thermal satellites choose a narrow spectral width to avoid a reduction in thermal signal 

due to atmospheric transmissivity. Microbolometer sensors technology rely on the width of the 

thermal spectral window to capture an adequate number of photons for thermal measurements. 

Therefore, it is expected that the spectral response of microbolometer cameras will affect 

kinematic temperature estimation procedures and prompting for methodologies to make them 

equivalent to satellite thermal products. 

Regarding kinematic and sensor (blackbody) temperature, the spectral response of the thermal sensor 

is vital towards the estimation of the true (or Kinematic) surface temperature. The relationship between 

radiometric and the kinematic temperature can be approximated as shown here 27,28: 

      (1) 

There Trad is the radiometric temperature (Kelvin) measured by the temperature sensor (Landsat or 

microbolometer), Tkin is the surface or kinematic temperature (Kelvin) and ε is the thermal emissivity 

of the surface being measured. This emissivity is also called narrowband emissivity, due to its 
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relationship to the spectral characteristics of the sensor measuring Trad. This equation can be 

considered valid only for very small distances between the sensor and the surface (1 to ~3m). A 

complete solution of the atmospheric transmissivity is required for longer distances (which includes 

UAVs, aircraft, and satellites) and is described in several publications 13,29–32. 

Thermal emissivity is a property of every surface and is influenced by the characteristics of the surface, 

such as spectral response, reflectance, roughness, thickness, water content, and energy amount (kinetic 

energy). Emissivity is typically reported in educational literature as an average value within the 8 to 

14μm range 27,28. For satellite temperature applications, a significant effort is made to estimate 

narrowband emissivity based on the spectral response of the sensor as presented here 33–35: 

       (2) 

Where ε  is the emissivity value for a wavelength , and f  is the spectral response of the sensor for a 

specific waveband. The integral of f  is equal to unity, and 1 and 2 are the limits of the spectral 

response of the sensor. Details of the derivation of Equation 2 can be found here 33.  

Given the spectral differences between satellite and microbolometer thermal sensors, the objectives 

of this study are twofold: (1) determine the impact of the spectral response of a microbolometer 

thermal sensor, (the ICI 9640-P Series radiometric camera 26), on the estimation of narrowband 

emissivities and surface temperature for agricultural and environmental environments, and (2) develop 

an initial model for spatially estimating narrowband emissivity that responds to the microbolometer 

camera characteristics based on optical and infrared information from Landsat / AggieAir UAV 

sensors. 

2. METHODS 

Relative to the first objective, the University of Notre Dame performed a laboratory test on the ICI 

9640-P camera following a published procedure 36 to derive the lens plus microbolometer sensor 

spectral response that is presented in Fig. 1. Hyperspectral emissivity information for different 

agricultural and natural environment surface conditions in the 3 to 14 µm range was acquired from the 

MODIS UCSB Emissivity Library37 for assessment of narrowband emissivities for ICI and Landsat. 

Relative to the second objective, hyperspectral spatial information was retrieved from the NASA JPL 
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Hyperspectral Thermal Emission Spectrometer -HYTES airborne Program for multiple commercial 

agricultural vineyards located in California. These vineyards are part of the Grape Remote sensing 

Atmospheric Profile & Evapotranspiration eXperiment GRAPEX 38. Details of the HYTES sensor and 

technology can be found here 39–42 with a list of flown locations up to date here 43. For the area of 

study, the spatial emissivity information covered different agricultural lands, (vineyards, alfalfa) and 

natural environments as presented in Fig. 2. 

 

Fig 2. 2014 NASA HYTES bands 150 (10.1 µm), 100 (9.2 µm), and 58 (8.5 µm) overpass over multiple vineyards and 
natural areas near Galt, CA. Two HYTES flights on the same date and time (NORTH and SOUTH, blue lines indicate 
flights) are included for this study. 

 

Fig 3. 2014 NASA HYTES bands 150 (10.1 µm), 100 (9.2 µm), and 58 (8.5 µm) overpass, along with 2011 National Land 
Cover Database (NLCD). (Brown color indicates cultivated lands and yellow Grassland/Herbaceous). Note that in several 
locations 2011 NLCD classes do not correspond to 2014 agricultural development. 

Landsat ETM+ Surface Reflectance Product is available from USGS44 for the same date as the HYTES 

airborne flights. In addition, AggieAir optical information was captured in the same growing season 

at a later date but in conjunction with Landsat 7 overpasses. Details on the thermal sensors’ 
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characteristics are presented in Table 1. Details on dates and times for HYTES, Landsat, and AggieAir 

are presented in Table 2. 

Table 1: NASA JPL HYTES and ICI 9640-P Characteristics and Products 

INSTRUMENT Spectrometer Thermal Camera 

Brand/Model JLP HYTES ICI/9640-P 

Weight (gr) 12000 141 

Image Size (pixel) 512 per track 640 by 480 

Ground Resolution (m) ~6 ~0.6 

Sensor Type pushbroom snapshot 

Spectral Range (μm) 7.5-12 7 - 14 

Number of Bands 256 1 

Spectral Band Centre (μm) 9.75 10.35 

Operating Range N/A -40 to 1400C 

Reported Accuracy N/A +/- 1.00C 

Reported Emissivity per band 1.0 

NIST Traceable? N/A NOT REPORTED 

Available product Surface temperature 
Hyperspectral Emissivity

Blackbody Temperature 
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Table 2. Spatial Products and Capture Times 

Spatial 
Product 

Spatial Information Ground 
Resolution (m) 

Capture Date and 
Time (PST) 

NASA JPL 

HYTES 

Hyperspectral Emissivity 6 2014-07-09 13:23 

Landsat ETM+ Surface Corrected Reflectance 30 2014-07-09 10:36 

AggieAir High-Resolution Reflectance 

and Temperature 

0.15 Reflectance 

0.60 Temperature 

2014-08-09 10:36 

It is evident from Table 2 that a direct comparison of surface temperature between HYTES and NASA 

ETM+ is not possible due to the time difference (~3 hours), nor is a comparison between AggieAir, 

HYTES, and Landsat possible due to dates. The proposed procedure for Objective (2) is as follows: 

 

Fig. 4 Flowchart for Estimation of High-Resolution Emissivity for ICI Cameras 

The estimation of spatial emissivity using HYTES information tailored to the ICI microbolometer 

spectral response is based on several steps as shown in Fig.4. The first step is the derivation of an 

HYTES emissivity product that responds to the ICI spectral response from Eq. 2. The ICI emissivity 

is then linearly aggregated to Landsat spatial scale for reflectance-emissivity model estimation. On 

the AggieAir UAV date, UAV reflectance information is “harmonized” to Landsat reflectance 
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characteristics based on the work described here 45 taking advantage of the same data collection timing. 

Lastly, the reflectance-emissivity model is applied to harmonized AggieAir reflectance for estimation 

of emissivity at UAV resolution (0.15m).  

3. RESULTS 

3.1 Hyperspectral Emissivity Analysis for Landsat and ICI thermal sensors 

Based on spectral emissivity curves available in the MODIS UCBS Emissivity Library, three major 

groups are considered for this analysis: water, vegetation, and soil.  Not all vegetation nor soil types 

are available in MODIS UCBS, thus a representative set is analyzed. The emissivity spectral responses 

for these three major groups, along with Landsat and ICI spectral responses, are presented in Fig. 5. 

In addition, computation of the Landsat and ICI emissivities using Equation 2 along with emissivity 

typically reported in the 8-14um spectral range for the evaluated groups are presented in Table 3. 

Fig. 5: Emissivity comparison based on MODIS UCBS Emissivity Library, Landsat and ICI spectral response for water 
surfaces (top left), vegetation (top right), and soil (bottom left), and a comparison of derived emissivities for Landsat and 
ICI vs reported 8-14um (bottom left). It is evident that emissivity values agree for water, agree less for vegetation but not 
for soil surfaces. 
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Table 3: Summary of emissivity values presented in Fig.5 for 8-14um, Landsat and ICI thermal sensors 

using MODIS UCBS Emissivity Library. 

Material  8-14um  Landsat ICI 

Water      0.98      0.99      0.99 

Ice      0.97      0.99      0.98 

Snow      0.98      0.99      0.99 

Soil Nebraska      0.94      0.97      0.93 

Soil Oklahoma      0.96      0.98      0.94 

Soil California      0.98      0.98      0.97 

Sandy Soil      0.96      0.96      0.89 

Dry Grass      0.96      0.95      0.97 

Pine      0.98      0.98      0.98 

Oak      0.97      0.97      0.97 

Cypress      0.99      0.99      0.99 

Eucalyptus      0.95      0.95      0.95 

It is evident that the spectral response of the thermal sensor plays a role in the narrowband emissivity 

estimates as shown in Fig. 5 and Table 3. Typical 8-14um averages for water surfaces agree with 

Landsat 8 and ICI sensors, as the differences between emissivity values are small. A similar 

affirmation can be made for vegetation. Nevertheless, for soil surfaces, the ICI sensor diverges from 

8-14um and Landsat emissivities, depending on the soil type present, but it is clear that emissivity for 

sandy soils will diverge more. This divergence in emissivity for soils and sandy surfaces has been 
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documented previously 46,  is due to strong quartz absorption. To further estimate the magnitude of 

the effects of emissivity for Landsat and ICI sensors, differences between kinetic and sensor 

temperature from 0 to 70 degrees Celsius for water, vegetation and soil are calculated and presented 

in Fig. 6. 

Fig. 6 Kinetic and Radiation Temperatures comparison (left column) and differences (right column) based on Landsat and 
ICI emissivities for water (top row), vegetation (middle row) and soil (bottom row). Note the agreement of Landsat and 
ICI for water (< 2 degrees Celsius), and for vegetation (<4 degrees Celsius). Soil surfaces present a significantly larger 
difference for ICI than for Landsat. 
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The results presented in Fig. 6 for kinematic and radiometric temperatures using Landsat or ICI 

indicates that the spectral response of the microbolometer camera affects the kinetic temperature 

estimates of soils to a greater magnitude than for vegetation or water. For Landsat, the expected 

maximum temperature difference across all evaluated surface groups is up to 4 degrees Celsius. For 

the ICI camera, the difference can be up to 10 degrees Celsius. This comparison indicates that care 

must be taken when mapping soil surfaces for energy balance methodologies due to the larger 

emissivity correction needed when using microbolometer cameras. 

3.2 ICI Emissivity Model 

As described in Section 2 and Figure 4, an HYTES emissivity product that responds to the ICI spectral 

response derived for the two HYTES flights (North and South) was scaled to Landsat resolution and 

is presented in Fig. 7. 

 

Fig.7 HYTES ICI derived emissivity at Landsat scale vs spectral bands (Blue, Green, Red, and NIR) and band combination 
from Landsat. SWIR bands are not considered due to lack of an equivalent in AggieAir UAV sensors. Blue and Red scatter 
color (named 1 and 2) are the HYTES North and South, respectively. 

It is evident from the comparison of Landsat optical spectral bands and combinations and HYTES ICI 

emissivity values in Fig. 7, that the correlation is limited or weak. In every presented scatterplot, a 

linear trend is clear, but with a considerable variance along the trend, indicating significant limitations 

for linear modeling of emissivity. Nonetheless, an initial approach that considers a linear combination 

of spectral bands from Landsat is presented below (Table 4 and Fig. 8). 
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Table 4. Performance of a Linear model for ICI emissivity estimation based on Landsat bands 

Model Inputs Coefficients Fit Statistics

y = a + b*x1^2 +c* x2^2 + d*x3^2 + e*x1 x1:GREEN 
x2:NIR 
x3:NDVI 
 

a:0.943 
b:-0.615 
c:-0.056 
d:-0.005 
e:0.042

Obs: 9600 
RMSE: 0.004 
 

 

 

Fig. 8 Performance of a Linear model for ICI emissivity estimation based on Landsat reflectance products. 

Table 4 and Fig. 8 show that a linear model based on reflectance and vegetation indices has a limited 

prediction capability due to the weak linear relationship between Landsat spectral bands and the 

HYTES ICI emissivity. A second approach, based on machine learning (Regression Decision Tree) 47 

and implemented in MATLAB (function fitrtree) is implemented as shown below: 
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Table 5. Performance of a Regression model for ICI emissivity estimation based on Landsat bands 

Model Inputs Calibration 
scheme

Fit Statistics 

Regression Decision Tree BLUE 
GREEN 
RED 
NIR

70% Training 
30% Testing 

Obs: 9600 
RMSE: 0.004 
 

 

 

Fig. 9 Performance of a Regression Decision Tree model for ICI emissivity estimation based on Landsat optical bands. 

The implemented Regression Decision Tree model provided a more adequate ICI derived emissivity 

estimation than the linear model. Nevertheless, the 1:1 comparison provided in Fig 8, indicates that 

the model can benefit from additional efforts in input variables and additional HYTES and Landsat 

datasets. Figs. 9 and 10 show the derivation of ICI emissivity at 0.15m/pixel using the 

Landsat/AggieAir UAV harmonized reflectance products. 
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Fig. 10 Estimation of High-resolution ICI emissivity using HYTES -Landsat Regression Decision Tree and AggieAir 
reflectance. Emissivity values range from 0.935 to 0.945. The model provides a clear differentiation between bare soil 
(soil and service roads) and vegetation (vineyards and forest) 
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Fig 11: Close Up of Harmonized Landsat/AggieAir reflectance and derived ICI emissivity map.  

4. CONCLUSIONS 

Thermal emissivity is an important property that is necessary for quantification of kinematic or true 

surface temperature. Microbolometer technology allows for high-resolution thermal mapping from 

UAVs and airborne sensors, and the captured information can be enhanced by understanding the 

spectral characteristics of the microbolometer and its effects on the estimation of thermal emissivity. 
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This study shows that the spectral response of microbolometer cameras will affect the estimation of 

kinematic temperatures, due to different emissivity estimates than provided in the literature, and 

significantly diverge for soil surfaces. Furthermore, the relationship between a microbolometer 

emissivity (in this case an ICI camera) and reflectance products from Landsat (RGBNIR) is weak, 

requiring non-linear (i.e. machine learning) approaches for emissivity modeling. The Regression 

Decision Tree model applied to HYTES ICI derived emissivity and Landsat reflectance was proven 

to adequately perform for AggieAir high-resolution reflectance information, indicating its suitability 

for spatial estimation of microbolometer emissivity. While the presented work is an initial approach 

to estimating emissivity for microbolometer cameras, further work including additional HYTES 

datasets for different times and locations would refine and improve the accuracy of the estimation of 

emissivity. In addition, an extended emissivity analysis of microbolometer cameras can be performed 

by including additional emissivity datasets such as the ASTER spectral library 48 for manmade 

surfaces and urban settings as well as more diverse agricultural vegetation. Furthermore, this work has 

not considered the effect of changes in water content in vegetation (morning dew, sprinklers) nor soil 

(after irrigation or rainfall), both of which can cause emissivity values to increase with larger water 

content and decrease with the diurnal cycle 49. 
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