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Abstract  16 

Quantification of evapotranspiration (ET) is crucial for understanding the water balance 17 

and for efficient water resources planning. Agricultural settings have received much 18 

attention regarding ET measurements while there is less knowledge regarding actual ET 19 

(ETA) in natural ecosystems. This study is focused on modelling ETA from stony soil, 20 

particularly in montane ecosystems where we estimate the contribution of stone content on 21 

water retention properties in soil. We employed a numerical model (HYDRUS-1D) to 22 

simulate ETA in natural settings in northern Utah and southern Idaho during the 2015 and 23 

2016 growing seasons based on meteorological and soil moisture measurements at a range 24 

of depths. We simulated ETA under three different scenarios, considering soil with (i) no 25 

stones, (ii) highly porous stones, and (iii) negligibly porous stones. The simulation results 26 

showed significant overestimation of modeled ETA when neglecting stones in comparison 27 

to ETA measured by eddy covariance. Modeled ETA estimates with negligibly porous 28 

stones were much lower for all cases due to the substantial decrease in soil water storage 29 

compared with estimates made considering highly porous stones. Assumptions of highly 30 

porous or negligibly porous stones lead to reductions in simulated ETA of between 10% 31 

and 30%, respectively, compared with no stones. These results reveal the important role 32 

played by soil stones, which can impact the water balance by altering available soil 33 

moisture and thus ETA in montane ecosystems. 34 

Keywords: Evapotranspiration, Forest soil, HYDRUS-1D, Stony-soil, Montane 35 

ecosystems  36 



1. Introduction 37 

Evapotranspiration (ET) is the largest outward flux of water and a key component of the 38 

hydrological cycle and is therefore essential in quantifying the water budget and planning 39 

water resources (Baldocchi and Ryu, 2011; Mu et al., 2007; Schelde et al., 2011; Sheffield 40 

et al., 2010). Water flux to the atmosphere by the process of ET constitutes up to 95% of 41 

the water balance in arid regions (Kool et al., 2014; Wilcox et al., 2003). However, ET 42 

remains a major source of uncertainty in eco-hydrological systems, and this uncertainty 43 

motivates research on more accurate quantification of ET within large-scale irrigated 44 

projects and natural ecosystems.  Forests have been recognized as a fundamental part of 45 

ecosystems that play a key part in regulating hydrological balance by altering streamflow 46 

and ET (Andreassia 2004; Ice and Stednick, 2004; Parajuli et al., 2019; Sun et al., 2008). 47 

Despite the fact that many studies have been conducted on ET estimation across different 48 

spatial scales ranging from point- to basin-scale (Parajuli 2015; Senay et al., 2011; Schelde 49 

et al., 2011), very few focused on natural ecosystems as compared to agricultural settings. 50 

Accurate quantification of ET in natural ecosystems is essential to evaluate the effects of 51 

land management and global change on availability of water, streamflow, and ecosystem 52 

productivity (Andreassia 2004; Parajuli 2018; Sun et al., 2008; Zhou et al., 2008).  53 

Correct information about temporal and spatial variations in ET is critical for better 54 

understanding of the interactions between land surfaces and the atmosphere and solving 55 

the water and energy balances used in hydrological and climate models (Kumar et al., 2006; 56 

Mu et al., 2007; Niu et al., 2011; Yang et al., 2011). Better estimates of ET are furthermore 57 

important to improve management of water resources and agricultural systems by assisting 58 

in decision making processes related to water allocations (Allen et al., 1998; Kumar et al., 59 



2006; Mu et al., 2007, Raziei and Pereira, 2013). However, it is challenging to calculate 60 

ET over land surfaces characterized by heterogeneity in soil and vegetation type and in 61 

other parameters affecting the ET (Mu et al., 2007; Senay et al., 2011; Sheffield et al., 62 

2010; Sun et al., 2008).  63 

A number of techniques to estimate ET have been developed, such as the catchment water 64 

budget method using soil and plant weighing lysimeters as well as the Bowen ratio and 65 

eddy covariance methods, which have been developed and applied at different scales 66 

(Prueger et al., 1997; Wilson et al., 2001). Watershed ET measurements using a catchment 67 

scale water budget approach, where ET is calculated as the residual of the water balance 68 

(Baldocchi and Ryu, 2011), depend on the reliability and accuracy of other observations 69 

such as precipitation, runoff, drainage and infiltration. Lysimeters on the other hand can 70 

provide actual ET (ETA) by measuring weight change, though their installation and 71 

maintenance costs are high. The surface energy balance approach and eddy covariance 72 

technique provide alternatives to measure ETA at spatial- and point-scales, while their 73 

applications are limited due to the requirement of intensive measurements and information 74 

about energy balance components (Law et al., 2002; Wilson et al., 2001). The latent heat 75 

flux data collected at eddy covariance towers are considered as validation of the results 76 

from hydrologic models at point- as well as regional-scales (Baldocchi et al., 1988; Wilson 77 

et al., 2001). 78 

Various analytical models have been developed to estimate ET where there are no direct 79 

measurements. A widely used model is the Penman-Monteith (PM) equation that calculates 80 

ET for a leaf or complete cover canopy based on observed meteorological parameters such 81 

as net radiation, wind speed and saturation deficit. The equation also includes turbulence 82 



characteristics by considering aerodynamic resistance and plant physiology via stomatal 83 

resistance, both of which are difficult to determine. The PM equation can be used to 84 

estimate reference ET (ETo), which represents the hypothetical ET of a short green crop 85 

(grass) that fully covers the ground with unlimited water availability, and has arbitrarily 86 

low stomatal resistance (Allen et al., 1998). The ETo is estimated based on meteorological 87 

parameters and does not depend on soil water and vegetation. The actual ET (ETA) will 88 

differ and is usually less, due to limited soil moisture or stomatal response to the natural 89 

ecosystem environment. As available soil moisture affects many ecological and 90 

environmental processes including ET, in principle, ET can be quantified by studying the 91 

soil moisture dynamics (Cai et al., 2017; Koster et al., 2004; Lv et al., 2014; Miyazawa et 92 

al., 2013; Wilson et al., 2001).  93 

There are numerical modeling approaches that can estimate ETA by accounting for soil 94 

moisture dynamics in the simulation of plant root water uptake and surface evaporation. 95 

HYDRUS-1D is one such model that has been widely used for simulating ETA (Hilten et 96 

al., 2008; Hlaváčiková and Novák 2013; Ries et al 2015; Sadeghi et al., 2019; Solyu et al., 97 

2011; Sutanto et al., 2012). HYDRUS-1D is a physically based finite-element model for 98 

simulating one dimensional flow of heat and water in variably saturated media that 99 

numerically solves the modified Richards equation (Richards, 1931) accounting for root 100 

water uptake as a sink term (Simunek et al., 2016). The model is able to simulate water 101 

flow in and out of the soil when adequate soil and vegetation parameters are provided. Both 102 

soil and vegetation are however, extremely diverse in montane ecosystems. Soil hydraulic 103 

properties vary horizontally and vertically due to non-uniformity in soil properties, 104 

representation of which requires detailed information on soil parameters to simulate the 105 



soil water flow and root water uptake (Mohanty 2013). An advantage of the HYDRUS-1D 106 

model is that it can inversely fit the soil hydraulic parameters when the measured soil water 107 

content, matric potential or other relevant information is provided (Simunek et al., 2016).   108 

Apart from the variation in soil texture, non-arable soils contain significant quantities of 109 

stone fragments (particles with diameter >2 mm) that may modify the water storage 110 

capacity of soil. Stones furthermore alter the soil hydraulic transport properties, which in 111 

turn affect the available water for root uptake (Cousin et al., 2003; Novak and Knava, 112 

2012). Higher stone content is expected to reduce the soil water storage capacity of stony 113 

soils in comparison to the fine soil matrix (soil constituents below 2 mm in diameter; 114 

Hlaváčiková et al. 2016; Novak et al., 2011; Parajuli et al., 2017a) when the stone porosity 115 

is lower. Stones reduce the available water for root uptake and hence limit the rate of ET 116 

(Novak and Knava, 2012; Parajuli et al., 2017; Tetegan et al. 2011). Many studies in the 117 

past have neglected the presence of soil stone fragments when simulating soil moisture 118 

dynamics. Two different approaches are common while dealing with stony soils. One 119 

assumes the stones as a non-porous system, hence any water held by the stones is not 120 

accounted for. This leads to reduced water estimation per unit volume as pointed out by 121 

Cousin et al. (2003) and Ugolini et al. (1998). Plant available soil water in such cases may 122 

be underestimated by up to 34% according to Cousin et al. (2003). By contrast, the second 123 

approach essentially considers the stones as behaving similar to the fine soil matrix, which 124 

typically has a higher water holding capacity than stones. In Cousin et al. (2003), plant 125 

available water was overestimated by 39% using this second approach. It may therefore be 126 

important to consider the contribution of stone fragments to soil water storage when 127 



simulating soil moisture dynamics involving ET estimation, especially when soil stone 128 

content is significant.  129 

The objectives of this research involved: (1) Modelling ETA using the physically based 130 

numerical model, HYDRUS-1D, and validating its output against eddy covariance 131 

measurements. (2) Examining the effect of stone content on estimation of ETA from natural 132 

vegetation in stony soils. (3) Comparing simulated ETA for cases; i) neglecting the presence 133 

of stones, ii) considering highly porous soil stone content and iii) considering negligibly 134 

porous stone content.  135 

2. Site Description 136 

In this study, we selected four climate stations in northern Utah and one in southern Idaho 137 

as shown in Figure 1. The location and general vegetation around the stations are presented 138 

in Table 1. The stations in Utah are part of the innovative Urban Transitions and Arid 139 

region Hydro-sustainability (iUTAH) project. The iUTAH project has developed and 140 

installed several weather- and aquatic-stations to monitor and understand Utah’s water 141 

resources.  These are referred to as GAMUT sites as they are intended to quantify processes 142 

on a Gradient Along Mountain to Urban Transition (GAMUT). These stations measure 143 

different aspects of climate, hydrology, and water quality in three watersheds (Logan 144 

River-, Red Butte Creek- and Provo River-Watersheds; iUTAH 2014; Jones et al., 2018).  145 

The climate of northern Utah and southern Idaho is typical of the montane semi-arid 146 

intermountain west and varies widely with four distinct seasons: cold snowy winter, hot 147 

dry summer and transition periods of spring and autumn. The majority of precipitation 148 

occurs as snowfall. The higher elevation weather stations are covered with snow until May 149 



or June whereas early snowmelt occurs at weather stations in lower elevations. Patches of 150 

sagebrush surround the observation sites at Tony Grove, Beaver Divide and Soapstone, 151 

while the Knowlton Fork station is located in a sloping meadow surrounded by tall ferns. 152 

The meteorological parameters required for calculating ETo (reference ET), such as air 153 

temperature, saturation deficit, net radiation and wind speed were recorded every fifteen 154 

minutes. In addition, the soil moisture and temperature were measured at depths of 5-, 10-, 155 

20-, 50-, and 100- cm using time-domain-transmissometry (TDT) at the same time step as 156 

the meteorological parameters (iUTAH 2014). Blonquist et al., (2005) and Jones et al., 157 

(2005) provide detailed description of the measurement principles of TDT, where the 158 

permittivity - soil moisture calibration is based on the Topp et al. (1980) equation. 159 

The Low Sage site is part of the Critical Zone Observatory (CZO) located in Reynolds 160 

Creek Experimental Watershed of southwestern Idaho, approximately 80 km southwest of 161 

Boise, Idaho, USA. The site was equipped with sensors to collect meteorological and soil 162 

data along with an eddy covariance tower to quantify water and carbon fluxes in a 163 

sagebrush ecosystem. Short and long wave radiation, air temperature and humidity were 164 

collected at the eddy covariance station every 30 minutes using a four-component net 165 

radiometer (CNR-1, Kipp and Zonen, Delft, The Netherlands), and a temperature/humidity 166 

probe (HMP155C, Vaisala, Helsinki, Finland). Ground heat flux was measured with six 167 

heat flux sensors (HFT3, REBS, Seattle, WA) installed 0.08-m deep within the soil and 168 

three sets of self-averaging thermocouples installed at 0.02 and 0.06-m deep (Fellows et 169 

al., 2017). The meteorological station near the EC tower includes measurements of air 170 

temperature, humidity, wind speed and direction and solar radiation. Weather and soil data 171 

were processed at 30-minute intervals. Precipitation was measured and aggregated hourly 172 



using a dual-gauge system especially designed for windy and snow dominated conditions. 173 

Volumetric soil water content was recorded every hour at mean depths of 5-, 15-, 30-, 60-174 

, and 90-cm.  175 

During installation of soil moisture sensors at each station, the excavated soil was analyzed 176 

in order to determine the soil texture, root distribution and stone content (Parajuli et al., 177 

2017b; Patton et al., 2018). The soil description for the selected stations exhibited a high 178 

degree of heterogeneity along the depth with significant volumetric stone content (v). 179 

Information on vertical distribution of stone content and root density derived from the soil 180 

pit description at each site is presented in Figure 2. 181 

Soil pit descriptions extended from the surface to 100 cm deep in most of the stations. 182 

Stone content in the bottommost layer was assumed to extend down to 200 cm, the bottom 183 

boundary for numerical simulations. As shown in Figure 2, Low Sage, Tony Grove, 184 

Knowlton Fork and Soapstone exhibited around 0.45 m3 m-3 volumetric stone content 185 

between the depth of 40- to 80-cm. Average stone content within a one-meter soil profile 186 

ranged from 0.07 m3 m-3 at Knowlton Fork to 0.38 m3 m-3 at Tony Grove. The majority of 187 

stones collected from soil pits in the iUTAH stations were sandstone with variation in their 188 

individual porosities. Sandstones with coarser grains had higher porosities, close to thirty 189 

percent and exhibited water retention properties similar to sandy soil. However, fine 190 

grained sandstones were negligibly porous with porosities between three to five percent. 191 

The water retention properties of the stones were measured by Parajuli et al. (2017a) and 192 

are presented in Table 2. 193 



3. Theoretical Considerations 194 

3.1 HYDRUS-1D Numerical Modeling 195 

In this study we used HYDRUS-1D software (Version 4.17, Simunek et al., 2013), which 196 

simulates variably-saturated water flow in soil using the modified Richards equation 197 

expressed as: 198 
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          (1)  199 

where θ is volumetric water content [L3 L-3], z is the vertical coordinate [L], t is time [T], 200 

h is the soil matric potential [L], K(h) is the unsaturated hydraulic conductivity function [L 201 

T-1] and S is a sink term [L3 L-3 T-1]. 202 

The variable boundary condition in HYDRUS-1D was governed by the effective 203 

precipitation, and actual flux exchange at the soil-atmosphere interface was driven by the 204 

atmospheric demand and controlled by the near-surface soil moisture described further in 205 

Simunek et al. (2013). The reference evapotranspiration (ETo) was calculated using the 206 

FAO-recommended Penman-Monteith combination equation using meteorological 207 

parameters (Allen et al., 1998; FAO, 1990; Monteith and Unsworth, 1990) and partitioned 208 

into potential evaporation (Ep) and potential transpiration (Tp) fluxes using Beer’s Law 209 

(Ritchie 1972):  210 
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where the soil cover fraction, SCF=1-exp(-k LAI), k is the radiation extinction coefficient 213 

(set to 0.463 for this study) and LAI is leaf area index (Simunek et al., 2013). 214 



The sink term, S in Equation (1) represents the volume of water lost from the soil in unit 215 

time due to root water uptake (Feddes et al., 1978) and calculated as (Simunek et al., 2013): 216 

     , , pS h z h z b z S          (4) 217 

where α(h,z) is the root-water uptake stress response function  (Feddes et al., 1974, 1978). 218 

Sp is the potential water uptake rate [T-1]. The normalized root-water uptake distribution 219 

function, b(z), describes the relationship between root-water uptake and root density 220 

distribution. The root distribution based on root counts from the soil pit description exhibits 221 

substantial variability from site to site and is unlikely to redevelop similarly given the 222 

disturbed soil being returned to the pit, thus root distribution from pit descriptions are not 223 

an ideal representation (Figure 2). Hence we used the Hoffman and van Genuchten (1983) 224 

method estimates as described in Simunek et al. (2013) in this study. Most of the selected 225 

sites were mixed grass and sagebrush at all weather stations as indicated in Table 1. The 226 

maximum crop height was considered to be 1 m with albedo 0.17 and surface roughness 227 

values of 0.001 m as suggested by Simunek et al. (2013). 228 

The lower boundary condition was set as a free drainage boundary, assuming an infinitely 229 

deep soil profile with no effect of ground water table. The initial conditions were described 230 

by the measured initial moisture content along the soil profile at time t = 0. The surface 231 

boundary condition of the soil domain was set to the atmospheric boundary condition with 232 

surface runoff. The soil parameters for the van Genuchten-Maulem water retention model 233 

(Mualem 1976; van Genuchten 1980) were calibrated for each layer using inverse 234 

modelling in HYDRUS-1D. The van Genuchten (1980) model is expressed as; 235 
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where Se is the effective degree of saturation [-], θr and θs are the residual and saturated 237 

volumetric water contents [m3 m-3], α is a factor related to the inverse of the air entry 238 

pressure [m-1], and n and m are empirical fitting parameters related to the soil pore-size 239 

distribution.  240 

The HYDRUS-1D numerical model was initialized using the soil hydraulic parameters 241 

obtained from field estimates. The soil profile was divided into five layers with one soil 242 

moisture sensor in each layer. The first step was to calibrate the model without the effect 243 

of stone content assuming the total soil profile was comprised of fine soil alone. The initial 244 

soil hydraulic parameters (θr, θs, α, n and Ks) were estimated using Rosetta Lite v1.1 245 

software in HYDRUS-1D, based on the sand, silt and clay fractions of fine soil obtained 246 

from soil pit descriptions (Parajuli et al., 2017b; Patton et al., 2018). If the Rosetta Lite 247 

predictions of θr and θs values were above the lowest or below the highest measured soil 248 

moisture values in each layer, the minimum or maximum measured values were set as  θr 249 

or θs, respectively. Model calibration was achieved primarily by inversely fitting the soil 250 

hydraulic parameters (α, n and Ks) for each of the 5 soil layers.  251 

3.2. Accounting for Stone Content in the HYDRUS-1D Simulation 252 

In order to address the impact of stone content on soil hydraulic properties and thus 253 

estimation of ETA, the stony soil was assumed to be a binary porous medium allowing two 254 

different water retention properties for stone and fine soil in each layer. The dual porosity 255 

water retention model (Durner 1994), which assumes equilibrium conditions, was applied 256 

to satisfy the algorithm suggested by Parajuli et al., (2017a) to account for the effect of 257 

stone fragments in the soil. 258 
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where the parameters with subscript so, st and mix are van Genuchten parameters for fine 260 

soil fraction, stone inclusion and soil-stone mixture, respectively. The weighting factors 261 

for soil and stone fractions, wso and wst, at saturation are defined as:  262 
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where v is the ratio of the stone fragment volume to the total soil volume (or volume 265 

fraction of stone content).  266 

In order to understand the impact of variably porous stones in simulation of ETA, two 267 

scenarios were studied where all the stones were considered as either coarse sandstones 268 

(highly porous) or fine sandstones (negligibly porous) with water retention properties 269 

expressed in Table 2.  270 

The unsaturated hydraulic conductivity as a function of the stony soil effective saturation 271 

is defined by combining Eq. (6) with Mualem’s (1976) pore-size distribution model as 272 

suggested by Durner et al. (1999):  273 
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  (9) 274 

where l is empirical parameter of the hydraulic function.  275 



4. Results  276 

4.1 Calibration of the HYDRUS-1D model  277 

The soil hydraulic parameters were optimized for different soil layers as described in 278 

Section 3.1 without considering the effect of stone content at each monitoring station. The 279 

initial as well as optimized soil hydraulic parameters at different depths are provided as 280 

supplementary material. The simulation period started following snowmelt, when the soil 281 

moisture was near field capacity. The Low Sage station in Idaho had early snowmelt 282 

allowing us to initialize the model on DOY 100 (10 April 2015), while iUTAH stations in 283 

Northern Utah were snow covered until about the middle to the latter part of May. In order 284 

to compare the same time period, simulations started on DOY 148 (28 May 2015) at all 285 

iUTAH stations running until the end of September (DOY 274). The same period was 286 

selected for both years to have better comparison of ET estimates under different 287 

conditions. Daily precipitation plotted in Figure 3 shows that 2016 experienced much less 288 

rainfall than 2015. The four iUTAH stations illustrated in Fig. (1) have recorded similar 289 

rainfall patterns over the period. There were several rain events during the simulation 290 

period in 2015, but 2016 remained relatively dry with one major precipitation event 291 

towards the end of September (DOY 268).  292 

Measured volumetric water content and HYDRUS-1D simulations of water content at soil 293 

profile depths of 5-, 15-, 30-, 60-, and 90-cm from the Low Sage station are presented in 294 

Figure 4. Variation in rainfall is expected to alter the soil moisture dynamics in both years. 295 

The volumetric water content approached the saturation level during spring snowmelt, but 296 

these montane soils drain quickly to field capacity once snowmelt ceases. Rain events 297 

during the summer of 2015 recharged the soil profile to a depth of 30 cm as shown in 298 



Figure 4. There was no significant rain event during the simulation period in 2016, and the 299 

soil dried down towards the end of the growing season. 300 

Simulation results for the four iUTAH sites using HYDRUS-1D are compared with TDT 301 

measured soil moisture contents at 5-, 10-, 20-, 50-, and 100-cm in Figure 5. Soil moisture 302 

dropped rapidly from a near-saturated condition at the beginning of the growing 303 

season/simulation period. Similar to Figure 4, the sensors at depths 5-, 10- and 20-cm 304 

reflected the effect of rainfall with rapid rise in moisture content readings during 2015; 305 

however, the amount of precipitation was not enough to wet the sensors below 20 cm 306 

throughout the growing season.  307 

The goodness of fit to the measured soil moisture values with the HYDRUS-1D simulation 308 

are expressed in terms of coefficients of determination (R2) and root mean squared errors 309 

(RMSE) shown in Table 3. The calibrated HYDRUS-1D simulation results compared well 310 

with measured soil moisture at each depth for both years. The coefficients of determination 311 

(R2) were greater than 0.8 for most depths, while a few of the simulation depths had R2 as 312 

low as 0.65 (Table 3). The RMSE remained less than 0.04 m3 m-3 on average for all the 313 

stations. The few R2 values below 0.8 and RMSE values greater than 0.03 m3 m-3 for 314 

individual depths are bolded for clarity in Table 3. The match between simulated and 315 

observed water contents at different depths in all stations suggests the HYDRUS-1D model 316 

hydraulic parameters were well calibrated to represent the soil hydrodynamics.  317 

4.2 Simulation of Actual Evapotranspiration 318 

At first the root water uptake and evaporative fluxes from soil and plants were simulated 319 

by HYDRUS-1D to provide an estimate of the ETA without considering the effect of stones. 320 

Daily ETA estimates simulated by HYDRUS-1D were compared with eddy covariance 321 



measurements of ETA at the Low Sage station as illustrated in Figure 6. The daily ETA 322 

simulated by the HYDRUS-1D model followed the seasonal patterns of eddy covariance 323 

measured ETA very well (Figure 6). The correlation between the eddy covariance 324 

measurements and the HYDRUS-1D simulation of ETA without stone content effects was 325 

found to have an R2 of 0.78 and 0.76 for years 2015 and 2016, respectively (Figure 7, Table 326 

4). Similarly, the RMSE values for 2015 and 2016 were 0.64 mm/day and 0.51 mm/day, 327 

respectively (Table 4). The HYDRUS-1D model periodically overestimated ETA compared 328 

to the eddy covariance measurements, mostly around rain events. The cumulative ETA  329 

measured by eddy covariance for the period DOY 101 (10 April) to DOY 273 (30 330 

September) was 305 mm and 221 mm in 2015 and 2016, whereas the HYDRUS-1D 331 

simulation estimated 332 mm and 198 mm in 2015 and 2016, respectively. This 332 

overestimation of ETA simulated by HYDRUS-1D in 2015 and the underestimation in 2016 333 

is also evident from the scatter plot for the no stones condition shown in Figure 7. However, 334 

the seasonal total ETA values from HYDRUS-1D were in good agreement with the eddy 335 

covariance results. 336 

 337 

4.3. Effect of Stone Content on Evapotranspiration 338 

With the aim of analyzing the impact of stone content on ETA, we simulated three different 339 

scenarios assuming soil for all five sites with: no stones; highly porous stones (Coarse 340 

Sandstone); and negligibly porous stones (Fine Sandstone). The average stone content for 341 

each layer was estimated based on the soil pit description also presented in Figure 2. The 342 

water retention parameters for the highly and negligibly porous stone considered for this 343 

study were measured in the laboratory (Parajuli et al., 2017a) and are presented in Table 2.  344 



The simulation in the Low Sage site where the average stone content was 0.18 m3 m-3 345 

showed substantial improvement in estimation of ETA, when the stones were considered 346 

as negligibly porous stones. The R2 values increased slightly while RMSE values were 347 

lower under the negligibly porous stone scenario for both years (Table 4). The result 348 

supported our assumption, namely, that if we could quantify the stone content in the soil 349 

properly and include that in the soil moisture simulation, the ETA from stony soil would be 350 

estimated more accurately. 351 

Figure 8 shows the cumulative ETA simulated by HYDRUS-1D under the three different 352 

scenarios considering soil with no stone, highly porous stone and negligibly porous stone 353 

at each station. With the purpose of comparing ETA over the same period for each site, the 354 

cumulative ET is presented from DOY 148 (28 May) to DOY 273 (30 September) for all 355 

stations. In general, the cumulative ETA over the same period in 2016 is much less than 356 

that from 2015 for all stations providing us with the impression that the available soil 357 

moisture limited the ETA. The year 2016 was considerably drier than 2015, resulting in 358 

reduced soil water storage, which is also implicit in Figure 4 and 5.  359 

The simulations under different conditions revealed significant reductions in cumulative 360 

ETA at the Tony Grove and Soapstone stations. The percent changes in simulated actual 361 

transpiration (TA), evaporation (EA) and ETA for conditions with highly porous stones and 362 

negligibly porous stones with reference to soil without stones, is presented in Table 5. The 363 

cumulative ETA was reduced by 10% and 21% at Tony Grove and 1% and 17% at 364 

Soapstone for assumptions of highly- and negligibly-porous stones, respectively (Table 5). 365 

However, there was not any noticeable change in cumulative ETA at the Knowlton Fork 366 

station where the average stone content was 0.07 m3 m-3. The Low Sage station that has 367 



average stone contents of 0.16 m3 m-3, exhibited a slight reduction in cumulative ETA, about 368 

4% and 10% when considering stony soil with negligibly porous and highly porous stones. 369 

Similarly, the Beaver Divide station with average stone content of 0.18 m3 m-3 showed 370 

reduction in ETA by nearly 3% while assuming highly porous stone and by 7% assuming 371 

negligibly porous stones for both years. In contrast, the ETA simulations for Beaver Divide 372 

in 2016 showed incremental changes when considering either stone type. 373 

5. Discussion 374 

5.1 Soil Moisture Dynamics and Model Calibration 375 

The inverse simulation was executed based on the goodness of fit between the measured 376 

and simulated soil moisture, however the measured soil moisture may not directly include 377 

and therefore represent stone content within the sensing volume. The ability of soil 378 

moisture sensors to account for the stone content is limited by their sensing volume (Vaz 379 

et al., 2013) and by the size of the surrounding stones (Coppola et al., 2013). In our study, 380 

soil moisture sensors were generally installed as to intentionally avoid stones around 381 

sensors. Hence measurements directly report soil moisture content of the soil matrix 382 

without stone content and therefore, calibration of the soil hydraulic parameters in the 383 

HYDRUS-1D numerical model was performed without directly accounting for the stone 384 

content. The HYDRUS-1D model was able to simulate the soil moisture remarkably well 385 

in all five stations with significant correlation of R2 greater than 0.8 and RMSE less than 386 

0.04 m3 m-3. These estimates were averaged over depths at all five stations for both years 387 

(Table 3). Some discrepancies were observed such as at the 20 cm depth in Beaver Divide 388 

and Soapstone, which showed relatively low R2 of 0.651 and high RMSE of 0.05 m3 m-3 389 

and 0.04 m3 m-3, respectively. The source of discrepancies between measured and 390 



simulated soil moisture is likely due to the limited information available to the HYDRUS-391 

1D model to account for the complexity caused by soil heterogeneity, stone content or 392 

preferential flow, which is quite common in forest soil (Flinn and Marks, 2007; Hawley et 393 

al., 1983). Although the soil texture and stone content varied considerably within the 394 

examined soil profiles, the simulation domains (2m deep) were clustered into five distinct 395 

layers based on textural information obtained from the soil pit description. This 396 

simplification of soil representation is a likely source of increased simulation error for soil 397 

moisture. 398 

5.2 Simulation of Actual Evapotranspiration 399 

The HYDRUS-1D simulation for 2015 and 2016 suggested that the ETA was strongly 400 

correlated to the soil moisture availability during the growing season as 2016 showed lower 401 

cumulative ETA corresponding to the drier soil profile (Figure 4; 5; 8). The ETA measured 402 

by the eddy covariance system at the Low Sage station and simulated by HYDRUS-1D 403 

followed the same trend (Figure 6). However, the model overestimated the peak values 404 

noticeably, usually after the rain events in 2015. Despite the difference between spatial 405 

scales of the eddy covariance footprint and the point scale simulation of HYDRUS-1D, the 406 

results validate the potential of quantifying ETA using soil moisture dynamics in natural 407 

settings. 408 

Slight differences between modeled daily ETA and values measured by eddy covariance 409 

were expected. The eddy covariance method does not always provide energy balance 410 

closure consistently, which may lead to underestimation of latent heat flux or ETA (Wilson 411 

et al., 2002). When comparing the sum of latent heat flux and sensible heat with available 412 

energy (Rn - G), Wilson et al. (2002) reported an average error of 20% from 22 FLUXNET 413 



(an eddy covariance network) sites. Although the energy budget ratio at the Low Sage site 414 

over the two years during snow-free, non-freezing periods was 0.96, weekly values over 415 

the simulation period in Figure 6 were as low as 0.80.  Moreover, error in HYDRUS-1D 416 

simulation may result from inaccuracy of model parameterization of soil hydraulics. Soils 417 

in natural settings are highly heterogeneous within the profile with extremely variable 418 

hydraulic properties. Limitations in the information representing soil and vegetation 419 

complexity might have resulted in incorrect estimations of water balance leading to 420 

erroneous ETA estimates in some cases.  421 

 422 

5.3 Accounting for Stone Content  423 

The magnitude of the effects of stone content on the ETA simulation was dependent upon 424 

the types of stone and their hydraulic properties. As presented in Durner (1994), prediction 425 

of both the water retention and hydraulic conductivity function near saturation may be 426 

highly unreliable and subject to large estimation error with even the best quality 427 

measurements. Acknowledging this, we assumed the saturated hydraulic conductivity of 428 

the stony soil was similar to that of the fine soil matrix while the unsaturated hydraulic 429 

conductivity for stony soil was defined by Eq. (14) as a function of effective saturation. 430 

Several studies suggest reduction in hydraulic conductivity due to increase in stone content, 431 

while conversely, the hydraulic conductivity has also been shown to increase in stony soil 432 

near saturation (Beckers et al., 2016; Sauer and Logsdon, 2002). Our simulation for low 433 

porosity stone tended to simulate ETA that matched well with the eddy covariance estimates 434 

(Figure 6). Simulation of stony soil with negligibly porous stone reduced the total 435 

cumulative ETA considerably at all five stations for both years except for Knowlton Fork, 436 



which exhibited the lowest average stone content (Figure 2). However, the high porosity 437 

stone, with water retention behavior similar to coarse sandstone, had the least effect on 438 

ETA simulation in comparison to the ETA estimated without accounting for the stone 439 

content. The cumulative ETA over the simulation period was reduced by up to 30% for the 440 

Soapstone site in 2016 when assuming negligibly porous stones (Table 5). This correlates 441 

well with results in Cousin et al. (2003) that showed overestimation of available water 442 

content by 39% when the presence of stones were not accounted for in soil.  443 

6. Conclusion 444 

In this study we demonstrated the influence of soil stone content on the uptake of water as 445 

evapotranspiration (ET) from a mixture of grass and sagebrush using stony-soil moisture 446 

dynamics. The soil moisture and ETA simulated by HYDRUS-1D were found to be in good 447 

agreement with directly measured soil moisture and ETA using the eddy covariance system 448 

indicating that the model is efficient in simulating the boundary fluxes including ETA. The 449 

simulated root water uptake from stony soil was found to be sensitive to stone content. 450 

Simulation results revealed a significant reduction in cumulative ETA of up to 30% percent 451 

of total ETA computed without accounting for the stone content. The simulated ETA values 452 

were least affected when considering soil with highly porous stones, while estimates were 453 

reduced significantly for the stations with higher average stone content, when considering 454 

soil with negligibly porous stones. Numerical simulations revealed that lower- and higher-455 

porosity stones reduced ETA by 30% and 10%, respectively, highlighting the potential for 456 

overestimation of ETA when stone content is neglected in modeling. It is hence important 457 

to incorporate hydraulic properties of stones to more accurately estimate ETA by 458 

accounting for stone impact on soil moisture dynamics in stony soil. This study provides 459 



guidelines and tools for numerical simulation of soil moisture dynamics for improved 460 

estimation of ETA from stony soils such as are commonly found in montane forest 461 

ecosystems. 462 
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 678 

Figure 1. Selected climate stations in Northern Utah and Reynolds Creek, Idaho installed 679 
by iUTAH and the Critical Zone Observatory (CZO) respectively. All stations have 680 
measurements of meteorological parameters including volumetric soil water content. The 681 
Low Sage station is furthermore equipped with an eddy covariance tower. 682 
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Figure 2. Root density distribution and volumetric stone content along the soil profile at 685 
(a) Low Sage, (b) Tony Grove, (c) Knowlton Fork, (d) Beaver Divide and (e) Soapstone 686 
weather stations. The root density distribution was estimated based on root counts from 687 
soil pit description and compared with Hoffman and van Genuchten (1983) method. The 688 
stone content were obtained from the soil pit description during the installation of climate 689 
stations. Information on stone content was available to the depth of around 100 cm. 690 
Below that depth the stone content is considered similar to the stone content in the bottom 691 
most layer from the soil pit description. The average stone content is taken from stone 692 
distribution in the entire 200 cm soil profile.  693 
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Figure 3. Daily precipitation during the HYDRUS-1D simulation period in the selected 695 
sites for 2015 and 2016.  696 
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Figure 4. Volumetric water content reported by Hydraprobe sensors (points) at different 699 
depths and as simulated by HYDRUS-1D (lines) after calibration for the growing seasons 700 
of 2015 and 2016 at the low sage station. The simulation period was between DOY 100 701 
(10 April) and DOY 273 (30 September).702 
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 703 

Figure 5. Volumetric water content reported by TDT sensor (points) at different depths 704 
and as simulated by HYDRUS-1D (lines) after calibration for the growing season of 2015 705 
and 2016 at Tony Grove (TG), Knowlton Fork (KF), Beaver Divide (BD) and Soapstone 706 
(SP).  The simulation period was between DOY 147 (27 May) and DOY 273 (30 707 
September).708 
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 709 
Figure 6. Actual evapotranspiration measurements from the eddy covariance system 710 
compared with actual evapotranspiration simulated using HYDRUS-1D without 711 
accounting for stone content at the Low Sage station in Reynolds Creek Experimental 712 
Watershed for the year 2015 and 2016.  713 
 714 
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 716 

Figure 7. Scatter plot between the evapotranspiration measured by the Eddy Covariance 717 
tower at the low sage station and the HYDRUS-1D simulations of actual 718 
evapotranspiration assuming no stones, highly porous and negligibly porous stones along 719 
with their regression line for 2015 and 2016.720 
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 721 
Figure 8. Cumulative evapotranspiration simulated by HYDRUS-1D under three 722 
different scenarios considering soil with -no stone, -highly porous stone and -negligibly 723 
porous stone at the Low Sage (LS), Tony Grove (TG), Knowlton Fork (KF), Beaver 724 
Divide (BD) and Soapstone (SP) stations for 2015 and 2016. The ET is cumulative from  725 
DOY 148 (28 May) to DOY 273 (30 September). The stone content along the soil profile 726 
is presented in Figure 2.  Average stone content (v) for each site is presented on the right 727 
side of each plot.728 



Table 1. Location and description of weather stations with major vegetation types and 729 
maximum LAI used in this study. The maximum LAI value for Low Sage weather station 730 
was taken from Finzel et al. (2012) while at the iUTAH stations LAI was determined 731 
from measurements of a Line Quantum Meter (MQ-301, Apogee).   732 
 733 
Station Latitude Longitude Elevation (m) Vegetation LAIMax 

Low Sage (LS) 43.14 -116.74 1608 Sagebrush 2.30
Tony Grove (TG) 41.89 -111.57 1928 Sagebrush, Grass 2.20
Knowlton Fork (KF) 40.81 -111.77 2178 Grass, Fern 4.50
Beaver Divide (BD) 40.61 -111.10 2508 Sagebrush, Grass 1.20
Soapstone (SP) 40.57 -111.04 2388 Sagebrush, Grass 2.30

 734 

 735 



Table 2. Measured water retention parameters: saturated water content (θs), residual water 736 
content (θr), shape parameters α and n for the stone fragments obtained from Parajuli et 737 
al., (2017).  738 
 739 

Parameters 
Highly Porous Stone 
(Coarse Sandstone) 

Negligibly Porous Stones 
(Fine Sandstone) 

θs   [m3 m-3] 0.28 0.036
θr   [m3 m-3] 0.012 0
α    [m-1] 0.032 0.084
n 2.115 1.219

 740 



Table 3. Goodness of fit for measured soil moisture content with the HYDRUS-1D simulation, expressed in terms of the coefficients of 741 
determination (R2) and root mean squared errors (RMSE) 742 
 743 

Year 
Sensor 
Depth 

Low Sage 
Sensor 
Depth 

Tony Grove Knowlton Fork Beaver Divide Soapstone 

R2 
RMSE 
(m3 m-3) 

R2 
RMSE 
(m3 m-3) 

R2 
RMSE 
(m3 m-3) 

R2 
RMSE 
(m3 m-3)

R2 
RMSE 
(m3 m-3)

2015 

5 cm 0.853 0.025 5 cm 0.927 0.021 0.667 0.028 0.671 0.047 0.927 0.025
15 cm 0.931 0.013 10 cm 0.951 0.014 0.853 0.017 0.889 0.032 0.873 0.035 
30 cm 0.957 0.028 20 cm 0.903 0.019 0.839 0.025 0.651 0.052 0.651 0.042 
60 cm 0.975 0.006 50 cm 0.989 0.006 0.962 0.008 0.866 0.026 0.638 0.039 
90 cm 0.967 0.019 100 cm 0.976 0.009 0.994 0.005 0.936 0.033 0.976 0.014
Average 0.937 0.018 0.949 0.014 0.863 0.017 0.803 0.038 0.813 0.031

2016 

5 cm 0.817 0.016 5 cm 0.989 0.011 0.893 0.017 0.771 0.044 0.966 0.015
15 cm 0.837 0.022 10 cm 0.990 0.007 0.974 0.010 0.875 0.030 0.978 0.012
30 cm 0.984 0.026 20 cm 0.989 0.014 0.942 0.016 0.919 0.029 0.913 0.022
60 cm 0.957 0.012 50 cm 0.985 0.012 0.986 0.012 0.807 0.036 0.705 0.041 
90 cm 0.935 0.022 100 cm 0.947 0.027 0.980 0.015 0.904 0.040 0.707 0.034 
Average 0.906 0.020 0.980 0.014 0.955 0.014 0.855 0.036 0.854 0.024

 744 
 745 
 746 
 747 
 748 



Table 4. Goodness of fit for evapotranspiration measured by eddy covariance with HYDRUS-749 
1D simulation considering soil with: (1) no stones, (2) highly porous stones, and (3) negligibly 750 
porous stones, expressed in terms of coefficients of determination (R2) and root mean squared 751 
errors (RMSE)  752 
 753 

  2015 2016

  R2 
RMSE 

(mm/day) R2
RMSE 

(mm/day) 

No Stone 0.78 0.64 0.76 0.51 

Highly Porous Stone 0.76 0.73 0.78 0.54 

Negligibly Porous Stone 0.79 0.55 0.79 0.49 

754 



Table 5. HYDRUS-1D simulated actual-Transpiration (T
A
) , -Evaporation (EA) and -Evapotranspiration (ETA) reported as mm of water 755 

loss at different sites in years 2015 and 2016 under three different scenarios considering soil with no stones, highly porous stones and 756 
negligibly porous stones. The numbers on right hand side are percent change while considering the highly- and negligibly-porous stones 757 
as compared to no stone condition.  758 
 759 

Year Scenario Component 

Low Sage 
Tony  
Grove 

Knowlton  
Fork 

Beaver  
Divide 

Soapstone 

(mm) 
Change

(%) 
(mm) 

Change
(%) (mm) 

Change 
(%) 

(mm) 
Change

(%) 
 (mm) 

Change
(%) 

2015 

No Stone 

T
A 134   262   228   267   384   

E
A 95 92 78  69 81 

ET
A
 229 354 306  336 466 

Highly  
Porous  
Stone 

T
A
 130 -3.06 258 -1.61 226 -0.84 265 -0.54 384 -0.22 

E
A
 101 5.97 59 -35.27 79 0.84 62 -11.14 80 -2.36 

ET
A
 231 0.70 317 -10.35 305 -0.41 327 -2.72 463 -0.60 

Negligibly  
Porous  
Stone 

T
A
 124 -6.97 180 -31.46 228 -0.12 247 -7.40 307 -20.22 

E
A
 81 -14.57 99 7.25 72 -8.02 67 -3.62 79 -2.85 

ET
A
 206 -10.13 278 -21.41 299 -2.14 314 -6.62 386 -17.19 

2016 

No Stone 

T
A
 103   156   165   172   245   

E
A
 9 57 56  114 54 

ET
A
 112   213   221   286   299   

Highly  
Porous  
Stone 

T
A
 99 -4.56 148 -5.07 163 -1.44 196 14.02 226 -7.64 

E
A
 10 10.17 54 -6.41 60 7.48 83 -27.56 52 -3.30 

ET
A
 109 -3.38 202 -5.43 222 0.81 278 -2.58 279 -6.85 

Negligibly  
Porous  
Stone 

T
A
 92 -11.31 111 -28.76 165 -0.16 180 5.07 160 -34.74 

E
A
 9 -0.52 55 -3.80 54 -3.45 86 -25.00 47 -13.80 

ET
A
 101 -10.44 166 -22.05 218 -0.99 266 -6.94 207 -30.95 

 760 


