172 research outputs found

    An in vitro comparison between two methods of electrical resistance measurement for occlusal caries detection

    Get PDF
    Because of different measurement techniques and the easier design of the CRM prototype, this in vitro study aimed to compare the diagnostic performance and reproducibility of two electrical methods (Electronic Caries Monitor III, ECM and Cariometer 800, CRM) for occlusal caries detection, and to evaluate the effect of staining/ discoloration of fissures on diagnostic performance. Hundred and seventeen third molars with no apparent occlusal cavitation were selected. Six examiners inspected all specimens independently, using the CRM, and a subgroup of 4 using the ECM. Histological validation using a stereomicroscope was performed after hemisectioning. Intra- and interexaminer reproducibility was assessed by Lin's concordance correlation coefficient (CCC) and Bland and Altman analysis. Diagnostic performance parameters included sensitivity (SE), specificity (SP) and area under the ROC curve (A(z)). The CCC yielded an intra- and interexaminer reproducibility of 0.69/0.62 (ECM) and of 0.79/0.74 (CRM). The mean intra- and interexaminer 95% range of measurements (range between Bland and Altman limits of agreement) given in percentages of the instrument reading were 67%/65% for the ECM and 28%/33% for the CRM. A(z) at the D3-4 level was 0.74 (ECM) and 0.78 (CRM). The CRM showed at least equivalent diagnostic performance to the ECM. However, improvement is still desirable. Diagnostic performance appeared to be enhanced in discolored lesions; however, this may be related to sample lesion distribution characteristics. Copyright (C) 2006 S. Karger AG, Basel

    Critical dynamics in the evolution of stochastic strategies for the iterated Prisoner's Dilemma

    Get PDF
    The observed cooperation on the level of genes, cells, tissues, and individuals has been the object of intense study by evolutionary biologists, mainly because cooperation often flourishes in biological systems in apparent contradiction to the selfish goal of survival inherent in Darwinian evolution. In order to resolve this paradox, evolutionary game theory has focused on the Prisoner's Dilemma (PD), which incorporates the essence of this conflict. Here, we encode strategies for the iterated Prisoner's Dilemma (IPD) in terms of conditional probabilities that represent the response of decision pathways given previous plays. We find that if these stochastic strategies are encoded as genes that undergo Darwinian evolution, the environmental conditions that the strategies are adapting to determine the fixed point of the evolutionary trajectory, which could be either cooperation or defection. A transition between cooperative and defective attractors occurs as a function of different parameters such a mutation rate, replacement rate, and memory, all of which affect a player's ability to predict an opponent's behavior.Comment: 27 pages, including supplementary information. 5 figures, 4 suppl. figures. Version accepted for publication in PLoS Comp. Bio

    Endoscopic and Percutaneous Preoperative Biliary Drainage in Patients with Suspected Hilar Cholangiocarcinoma

    Get PDF
    INTRODUCTION: Controversy exists over the preferred technique of preoperative biliary drainage (PBD) in patients with hilar cholangiocarcinoma (HCCA) requiring major liver resection. The current study compared outcomes of endoscopic biliary drainage (EBD) and percutaneous transhepatic biliary drainage (PTBD) in patients with resectable HCCA. METHODS: One hundred fifteen consecutive patients were explored for HCCA between 2001 and July 2008 and assigned by initial PBD procedure to either EBD or PTBD. RESULTS: Of these patients, 101 (88%) underwent PBD; 90 patients underwent EBD as primary procedure, and 11 PTBD. The technical success rate of initial drainage was 81% in the EBD versus 100% in the PTBD group (P = 0.20). Stent dislocation was similar in the EBD and PTBD groups (23% vs. 20%, P = 0.70). Infectious complications were significantly more common in the endoscopic group (48% vs. 9%, P < 0.05). Patients in the EBD group underwent more drainage procedures (2.8 vs. 1.4, P < 0.01) and had a significantly longer drainage period until laparotomy (mean 15 weeks vs. 11 weeks in the PTBD group; P < 0.05). In 30 patients, EBD was converted to PTBD due to failure of the endoscopic approach. CONCLUSIONS: Preoperative percutaneous drainage could outperform endoscopic stent placement in patients with resectable HCCA, showing fewer infectious complications, using less procedure

    Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: <it>1</it>) baseline coronary blood flow (CBF) was significantly decreased, <it>2</it>) endothelium-dependent (ACh) coronary vasodilation was impaired, and <it>3</it>) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes.</p> <p>Methods</p> <p>Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4).</p> <p>Results</p> <p>The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca<sup>2+ </sup>cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated.</p> <p>Conclusion</p> <p>our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.</p

    Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein

    Get PDF
    The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention

    The International Caries Classification and Management System (ICCMSℱ) An Example of a Caries Management Pathway.

    Get PDF

    Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

    Get PDF
    International audienceSelenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility
    • 

    corecore