61 research outputs found
The GMRT EoR Experiment: Limits on Polarized Sky Brightness at 150 MHz
The GMRT reionization effort aims to map out the large scale structure of the
Universe during the epoch of reionization (EoR). Removal of polarized Galactic
emission is a difficult part of any 21 cm EoR program, and we present new upper
limits to diffuse polarized foregrounds at 150 MHz. We find no high
significance evidence of polarized emission in our observed field at mid
galactic latitude (J2000 08h26m+26). We find an upper limit on the
2-dimensional angular power spectrum of diffuse polarized foregrounds of [l^2
C_l/(2 PI)]^{1/2}< 3K in frequency bins of width 1 MHz at 300<l<1000. The
3-dimensional power spectrum of polarized emission, which is most directly
relevant to EoR observations, is [k^3 P_p(k)/(2 PI^2)]^{1/2}
0.03 h/Mpc, k < 0.1 h/Mpc. This can be compared to the expected EoR signal in
total intensity of [k^3 P(k)/ (2 PI^2) ]^{1/2} ~ 10 mK. We find polarized
structure is substantially weaker than suggested by extrapolation from higher
frequency observations, so the new low upper limits reported here reduce the
anticipated impact of these foregrounds on EoR experiments. We discuss Faraday
beam and depth depolarization models and compare predictions of these models to
our data. We report on a new technique for polarization calibration using
pulsars, as well as a new technique to remove broadband radio frequency
interference. Our data indicate that, on the edges of the main beam at GMRT,
polarization squint creates ~ 3% leakage of unpolarized power into polarized
maps at zero rotation measure. Ionospheric rotation was largely stable during
these solar minimum night time observations.Comment: 17 pages, 6 figures, 2 tables; changed figures, added appendices. To
appear in MNRA
Multiple antimicrobial resistance in plague: An emerging public health risk
Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern
Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder
We present results from a new incoherent-beam Fast Radio Burst (FRB) search
on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its
large instantaneous field of view (FoV) and relative thermal insensitivity
allow us to probe the ultra-bright tail of the FRB distribution, and to test a
recent claim that this distribution's slope, , is quite small. A 256-input incoherent beamformer was
deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were
described by a single power-law with , we would expect an FRB
detection every few days, making this the fastest survey on sky at present. We
collected 1268 hours of data, amounting to one of the largest exposures of any
FRB survey, with over 2.4\,\,10\,deg\,hrs. Having seen no
bursts, we have constrained the rate of extremely bright events to
\,sky\,day above \,220 Jy\,ms
for between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also
allows us to rule out with 95 confidence, after
marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we
show that for a cosmological population and a large dynamic range in flux
density, is brightness-dependent. Since FRBs now extend to large
enough distances that non-Euclidean effects are significant, there is still
expected to be a dearth of faint events and relative excess of bright events.
Nevertheless we have constrained the allowed number of ultra-intense FRBs.
While this does not have significant implications for deeper, large-FoV surveys
like full CHIME and APERTIF, it does have important consequences for other
wide-field, small dish experiments
Peer-Assessed Outcomes in the Multimodal Treatment Study of Children With Attention Deficit Hyperactivity Disorder
Peer-assessed outcomes were examined at the end of treatment (14 months after study entry) for 285
children (226 boys, 59 girls) with attention deficit hyperactivity disorder (ADHD) who were rated by their
classmates (2,232 classmates total) using peer sociometric procedures. All children with ADHD were
participants in the Multimodal Treatment Study of Children with ADHD (MTA). Treatment groups were
compared using the orthogonal treatment contrasts that accounted for the largest amount of variance in
prior MTA outcome analyses: Medication Management + Combined Treatment versus Behavior Therapy +
Community Care; Medication Management versus Combined Treatment; Behavior Therapy versus
Community Care. There was little evidence of superiority of any of the treatments for the peer-assessed
outcomes studied, although the limited evidence that emerged favored treatments involving medication
management. Post hoc analyses were used to examine whether any of the four treatment groups yielded
normalized peer relationships relative to randomly selected- classmates. Results indicated that children
from all groups remained significantly impaired in their peer relationships
Low-Pathogenic Avian Influenza Viruses in Wild House Mice
Background: Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics.
Methodology/Principal Findings: We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p\u3c0.05) higher concentrations of avian influenza RNA found in females compared with males.
Conclusions/Significance: Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
The World Federation of ADHD International Consensus Statement:208 Evidence-based conclusions about the disorder
Background: Misconceptions about ADHD stigmatize affected people, reduce credibility of providers, and prevent/delay treatment. To challenge misconceptions, we curated findings with strong evidence base. Methods: We reviewed studies with more than 2000 participants or meta-analyses from five or more studies or 2000 or more participants. We excluded meta-analyses that did not assess publication bias, except for meta-analyses of prevalence. For network meta-analyses we required comparison adjusted funnel plots. We excluded treatment studies with waiting-list or treatment as usual controls. From this literature, we extracted evidence-based assertions about the disorder. Results: We generated 208 empirically supported statements about ADHD. The status of the included statements as empirically supported is approved by 80 authors from 27 countries and 6 continents. The contents of the manuscript are endorsed by 366 people who have read this document and agree with its contents. Conclusions: Many findings in ADHD are supported by meta-analysis. These allow for firm statements about the nature, course, outcome causes, and treatments for disorders that are useful for reducing misconceptions and stigma.</p
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
- …