226 research outputs found

    Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum

    Get PDF
    Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria

    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion

    Full text link
    The orthogonal matching pursuit (OMP) is an algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general and in particular for two deconvolution examples from mass spectrometry and digital holography respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transfered to ill-posed inverse problems since here the atoms are typically far from orthogonal: The ill-posedness of the operator causes that the correlation of two distinct atoms probably gets huge, i.e. that two atoms can look much alike. Therefore one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for exact recovery of the support of noisy signals. In the two examples in mass spectrometry and digital holography we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography our analysis may be regarded as a first step to calculate the resolution power of droplet holography

    Barrel swirl breakdown in spark-ignition engines: Insights from particle image velocimetry measurements

    Get PDF
    This is an article from the journal, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [© IMechE ]. It is also available at: http://dx.doi.org/10.1243/0954407991527134Particle image velocimetry (PIV) has been used here to study the formation and breakdown of barrel swirl ('tumble') in a production geometry, four-stroke, four-valve, motored, spark-ignition, optically accessed internal combustion (IC) engine. The barrel swirl ratio (BSR) of the cylinder head could be enhanced by means of a port face inducer gasket so that the flow processes taking place at low and high swirl ratios could be investigated conveniently. Double-exposed images from planes both parallel and perpendicular to the cylinder axis were recorded at selected crank angles through the induction and compression strokes at a motored engine speed of 1000 r/min, with a wide open throttle, for both high and low BSR cases. The recorded images were interrogated by digital autocorrelation to give two-dimensional maps of instantaneous velocity. In both high and low BSR cases, a barrel or tumbling vortex motion is generated during induction, which is shown to persist throughout the majority of the compression stroke. The details of barrel swirl formation during induction and its subsequent modification during compression, however, differ strongly between the two cases. These differences can be explained qualitatively in terms of two main events; the first being competition during induction between vortices of unequal strength and the second being competition between the large-scale swirl motion and the local flow field generated by piston motion during compression. In the low barrel swirl case, significant dissipation occurs owing to these interactions and consequently the large-scale motion exhibits lower mean velocities and undergoes significant distortion. In the case of high BSR, the competition effects are minimized and a single ordered vertical vortex exhibiting high velocity magnitudes is observed to avoid piston induced distortion. It then moves into the apex of the pent roof combustion chamber where it survives as a single ordered vortex until at least 40° crank angle (CA) before top dead centre (TDC). Limitations and developments of the PIV technique are discussed

    Effect of molecular and electronic structure on the light harvesting properties of dye sensitizers

    Get PDF
    The systematic trends in structural and electronic properties of perylene diimide (PDI) derived dye molecules have been investigated by DFT calculations based on projector augmented wave (PAW) method including gradient corrected exchange-correlation effects. TDDFT calculations have been performed to study the visible absorbance activity of these complexes. The effect of different ligands and halogen atoms attached to PDI were studied to characterize the light harvesting properties. The atomic size and electronegativity of the halogen were observed to alter the relaxed molecular geometries which in turn influenced the electronic behavior of the dye molecules. Ground state molecular structure of isolated dye molecules studied in this work depends on both the halogen atom and the carboxylic acid groups. DFT calculations revealed that the carboxylic acid ligands did not play an important role in changing the HOMO-LUMO gap of the sensitizer. However, they serve as anchor between the PDI and substrate titania surface of the solar cell or photocatalyst. A commercially available dye-sensitizer, ruthenium bipyridine (RuBpy), was also studied for electronic and structural properties in order to make a comparison with PDI derivatives for light harvesting properties. Results of this work suggest that fluorinated, chlorinated, brominated, and iyodinated PDI compounds can be useful as sensitizers in solar cells and in artificial photosynthesis.Comment: Single pdf file, 14 pages with 7 figures and 4 table

    Molecular Spiders in One Dimension

    Full text link
    Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.Comment: 14 pages, 2 figure

    Perovskite Solar Cells with Carbon-Based Electrodes – Quantification of Losses and Strategies to Overcome Them

    Get PDF
    Funder: UNIQUEFunder: National University of Ireland Travelling StudentshipFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266Funder: Cambridge Trust ScholarshipFunder: Robert Gardiner ScholarshipCarbon-based electrodes represent a promising approach to improve stability and up-scalability of perovskite photovoltaics. The temperature at which these contacts are processed defines the absorber grain size of the perovskite solar cell: in cells with low-temperature carbon-based electrodes (L-CPSCs), layer-by-layer deposition is possible, allowing perovskite crystals to be large (>100 nm), while in cells with high-temperature carbon-based contacts (H-CPSCs), crystals are constrained to 10-20 nm size. To enhance the power conversion efficiency of these devices, the main loss mechanisms were identified for both systems. Measurements of charge carrier lifetime, quasi-Fermi level splitting (QFLS) and light-intensity-dependent behavior, supported by numerical simulations, clearly demonstrate that H-CPSCs strongly suffer from non-radiative losses in the perovskite absorber, primarily due to numerous grain boundaries. In contrast, large crystals of L-CPSCs provide long carrier lifetime (1.8 µs) and exceptionally high QFLS of 1.21 eV for an absorber bandgap of 1.6 eV. These favorable characteristics explain the remarkable open-circuit voltage (VOC) of over 1.1 V in hole-selective layer-free L-CPSCs. However, the low photon absorption and poor charge transport in these cells limit their potential. Finally, effective strategies are provided to reduce non-radiative losses in H-CPSCs, transport losses in L-CPSCs and to improve photon management in both cell types.This work has been partially funded within the projects PROPER financed from the German Ministry of Education and Research under funding number 01DR19007 and UNIQUE supported under umbrella of SOLAR-ERA.NET_cofund by ANR, PtJ, MIUR, MINECO-AEI and SWEA, within the EU's HORIZON 2020 Research and Innovation Program (cofund ERA-NET Action No. 691664). D. B. acknowledges the scholarship support of the German Federal Environmental Foundation (DBU) and S. Z. acknowledges the scholarship support of the German Academic Exchange Service (DAAD). B.Y. and A.Ha. acknowledge the funding from the European Union’s Horizon 2020 research and innovation program ESPRESSO under the agreement No.: 764047. This work has also been partially funded by Swiss National Science Foundation with Project No. 200020_185041. T.D. acknowledges a National University of Ireland Travelling Studentship. K.F. acknowledges a George and Lilian Schiff Studentship, Winton Studentship, the Engineering and Physical Sciences Research Council (EPSRC) studentship, Cambridge Trust Scholarship, and Robert Gardiner Scholarship. S.S. acknowledges support from the Royal Society and Tata Group (UF150033). M.A. acknowledges funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No.841386. The authors would like to thank Maryamsadat Heydarian and Laura Stevens for their EQE and AFM measurements. The authors thank the EPSRC (EP/R023980/1) for funding

    Queer activism in Taiwan: an emergent rainbow coalition from the assemblage perspective

    Get PDF
    A social movement for sexual and gender minorities (the Movement) emerged in Taiwan around the 1990s after the abolition of martial law in 1987. This article, drawing on Deleuze’s assemblage theory, looks at how activists negotiate and compete over constructing the discourses of sexual rights and citizenship in a context of democratic transition. With the recent ‘Renaissance’ of conservatism, which combines Confucianism and Christianity, the Movement has been thus de- and reterritorialised in response, and such a process has brought to the fore a rainbow coalition – a larger composition of assemblage rather than simply a descriptor. Gaining greater leverage and influence on society, the coalition, based on the pursuit of self-determination and self-liberation, has inversely provided soil for a cosmopolitan identity of Taiwaneseness to grow
    • …
    corecore