10 research outputs found
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Intérêt de l'impédancemétrie cardiographique pour la mesure des paramètres de contractilité et du volume de l'éjection ventriculaire gauche
Introduction : Plusieurs études ont montré l intérêt d un monitorage du débit cardiaque en réanimation notamment à la phase aigue de la prise en charge. Notre étude observationnelle a pour but de comparer les valeurs de débit cardiaque et de contractilité données par l impédancemétrie cardiographique (ICG) avec celles mesurées par la méthode de référence qu est l écho-doppler tranthoracique (ETT). Matériel et méthode : Nous avons étudié 10 patients septiques de réanimation sous ventilation mécanique. Les données hémodynamiques ont été obtenues avec les deux méthodes. Le volume d éjection systolique (VES) a été comparé avec les deux méthodes. La vitesse de l onde S mitrale (Sm) a été comparée à l index de Heather (HI), à l accélération maximale du flux aortique (ACI) et à la vitesse maximale du flux (VI). L index de Tei a été comparé au Ratio de temps systolique (STR). La fraction de raccourcissement de surface (FRS) a été comparée à HI. Résultats : Le VES par impédancemétrie est corrélé au VES mesuré par ETT (r = 0,81, p<0,0001 et r=0,75, p<0,0001). Les limites d agréments sont comprises entre -29,6ml et +29ml et le biais est de -0,3ml. Le pourcentage d erreur est de 41%. L analyse des indices de contractilité myocardiques retrouvait une corrélation entre la Sm et le VI, l ACI et le HI par impédancemétrie respectivement (r=0,60, p=0,0014 ; r=0,55, p= 0,014 et r=0,61, p=0,001). La FRS était corrélée avec l Hi (r=0,52, p=0,0136) et le TFC (r=0,72, p=0,0001). Une valeur de Hi < 2,6 semble discriminer les patients ayant une FRS à 40%. L index de TEI était corrélé avec le STR (r=0,51, p=0,0042). Conclusion : l impédancemétrie thoracique semble une technique prometteuse pour évaluer le débit cardiaque et certains paramètres de contractilité myocardique.Introduction: Several studies have shown the relevance of a cardiac output monitoring in intensive care, especially during the acute phase. Our observational study aims at comparing the different results of stroke volume (SV) and cardiac contractility between results given by the impedance cardiography (ic) and those given by the referential method: the transthoracic echocardiography (TTE). Materials and method: 10 septic mechanically ventilated patients were studied. We collected haemodynamics data with icg and TTE. Primary outcome was the analysis of SV with the two différents methods. The S mitral wave (Sm) was compared to Heather index (HI), to the aortic flow accélération (ACI) and to the maximal speed of aortic flow (VI). Tei index was compared to the systolic time ratio (STR). Shortening fraction of surface (SFS) was compared to the HI. Results: the SV with the impedance measurement are correlated with the echocardiography results (r = 0.81, p<0.0001). The limits of agreement are contained between -29.6 ml and +29ml. The bias is -0.3ml. The error percentage is 41% for the SV. The cardiac contractility measured with Sm was correlated with the VI, the ACI and the HI thanks to the impedance measurement (r = 0.60, p = 0.0014; r = 0.55, p = 0,014 and r = 0.61, p = 0.001 respectively). The SFS was correlated with the HI (r = 0.52, p = 0.0136) and the TFC (r = 0.72,p = 0.0001). The TEI index was correlated with the STR (r = 0.51, p = 0.0042). Conclusion: the thoracic impedance measurement seems to be a promising technique to measure the cardiac output and some of the myocardial contractility parameters.AMIENS-BU Santé (800212102) / SudocSudocFranceF
ICEPO: the ion channel electrophysiology ontology
Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use
Annotation of functional impact of voltage-gated sodium channel mutations.
Voltage-gated sodium channels are pore-forming transmembrane proteins that selectively allow sodium ions to flow across the plasma membrane according to the electro-chemical gradient thus mediating the rising phase of action potentials in excitable cells and playing key roles in physiological processes such as neurotransmission, skeletal muscle contraction, heart rhythm, and pain sensation. Genetic variations in the nine human genes encoding these channels are known to cause a large range of diseases affecting the nervous and cardiac systems. Understanding the molecular effect of genetic variations is critical for elucidating the pathologic mechanisms of known variations and in predicting the effect of newly discovered ones. To this end, we have created a Web-based tool, the Ion Channels Variants Portal, which compiles all variants characterized functionally in the human sodium channel genes. This portal describes 672 variants each associated with at least one molecular or clinical phenotypic impact, for a total of 4,658 observations extracted from 264 different research articles. These data were captured as structured annotations using standardized vocabularies and ontologies, such as the Gene Ontology and the Ion Channel ElectroPhysiology Ontology. All these data are available to the scientific community via neXtProt at https://www.nextprot.org/portals/navmut
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis
International audienc
Predicting 90-day survival of patients with COVID-19: Survival of Severely Ill COVID (SOSIC) scores
International audienceBackground Predicting outcomes of critically ill intensive care unit (ICU) patients with coronavirus-19 disease (COVID-19) is a major challenge to avoid futile, and prolonged ICU stays. Methods The objective was to develop predictive survival models for patients with COVID-19 after 1-to-2 weeks in ICU. Based on the COVID–ICU cohort, which prospectively collected characteristics, management, and outcomes of critically ill patients with COVID-19. Machine learning was used to develop dynamic, clinically useful models able to predict 90-day mortality using ICU data collected on day (D) 1, D7 or D14. Results Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7, and SOSIC-14 scores were constructed with 4244, 2877, and 1349 patients, respectively, randomly assigned to development or test datasets. The three models selected 15 ICU-entry variables recorded on D1, D7, or D14. Cardiovascular, renal, and pulmonary functions on prediction D7 or D14 were among the most heavily weighted inputs for both models. For the test dataset, SOSIC-7’s area under the ROC curve was slightly higher (0.80 [0.74–0.86]) than those for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 (0.76 [0.68–0.83]). Similarly, SOSIC-1 and SOSIC-7 had excellent calibration curves, with similar Brier scores for the three models. Conclusion The SOSIC scores showed that entering 15 to 27 baseline and dynamic clinical parameters into an automatable XGBoost algorithm can potentially accurately predict the likely 90-day mortality post-ICU admission (sosic.shinyapps.io/shiny). Although external SOSIC-score validation is still needed, it is an additional tool to strengthen decisions about life-sustaining treatments and informing family members of likely prognosis
Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals
International audienceAbstract Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) ( P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% ( P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P < 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed
Characteristics and prognosis of bloodstream infection in patients with COVID-19 admitted in the ICU: an ancillary study of the COVID-ICU study
International audienceBackground Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-COV 2) and requiring intensive care unit (ICU) have a high incidence of hospital-acquired infections; however, data regarding hospital acquired bloodstream infections (BSI) are scarce. We aimed to investigate risk factors and outcome of BSI in critically ill coronavirus infectious disease-19 (COVID-19) patients. Patients and methods We performed an ancillary analysis of a multicenter prospective international cohort study (COVID-ICU study) that included 4010 COVID-19 ICU patients. For the present analysis, only those with data regarding primary outcome (death within 90 days from admission) or BSI status were included. Risk factors for BSI were analyzed using Fine and Gray competing risk model. Then, for outcome comparison, 537 BSI-patients were matched with 537 controls using propensity score matching. Results Among 4010 included patients, 780 (19.5%) acquired a total of 1066 BSI (10.3 BSI per 1000 patients days at risk) of whom 92% were acquired in the ICU. Higher SAPS II, male gender, longer time from hospital to ICU admission and antiviral drug before admission were independently associated with an increased risk of BSI, and interestingly, this risk decreased over time. BSI was independently associated with a shorter time to death in the overall population (adjusted hazard ratio (aHR) 1.28, 95% CI 1.05–1.56) and, in the propensity score matched data set, patients with BSI had a higher mortality rate (39% vs 33% p = 0.036). BSI accounted for 3.6% of the death of the overall population. Conclusion COVID-19 ICU patients have a high risk of BSI, especially early after ICU admission, risk that increases with severity but not with corticosteroids use. BSI is associated with an increased mortality rate
Correction to: Characteristics and prognosis of bloodstream infection in patients with COVID‑19 admitted in the ICU: an ancillary study of the COVID‑ICU study
International audienc
Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study
International audienceBackground: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (> 70 years old) with COVID-19 admitted in the intensive care unit (ICU). Methods: Characteristics, management, and prognosis of critically ill old patients (> 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality. Results: The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72–78] years). Fifty-three percent, 31%, and 16% were 70–74, 75–79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2–3). Upon admission, the PaO2/FiO2 ratio was 154 (105–222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24–2.27; p < 0·001). Conclusion: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission