60 research outputs found

    Prospects for the development of odour baits to control the tsetse flies Glossina tachinoides and G. palpalis s.l.

    Get PDF
    Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced (~5×) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2×) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (~5×) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (~500 mg/h) doses of acetone also consistently produced significant but slight (~1.6×) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only ~50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short-range interaction

    Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Get PDF
    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin

    Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    Get PDF
    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.info:eu-repo/semantics/publishedVersio

    Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?

    Full text link
    peer reviewedBackground Aboveground, plants release volatile organic compounds (VOCs) that act as chemical signals between neighbouring plants. It is now well documented that VOCs emitted by the roots in the plant rhizosphere also play important ecological roles in the soil ecosystem, notably in plant defence because they are involved in interactions between plants, phytophagous pests and organisms of the third trophic level. The roles played by root-emitted VOCs in between- and within-plant signalling, however, are still poorly documented in the scientific literature. Scope Given that (1) plants release volatile cues mediating plant-plant interactions aboveground, (2) roots can detect the chemical signals originating from their neighbours, and (3) roots release VOCs involved in biotic interactions belowground, the aim of this paper is to discuss the roles of VOCs in between- and within-plant signalling belowground. We also highlight the technical challenges associated with the analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated root-root interactions. Conclusions We conclude that root-root interactions mediated by volatile cues deserve more research attention and that both the analytical tools and methods developed to study the ecological roles played by VOCs in interplant signalling aboveground can be adapted to focus on the roles played by root-emitted VOCs in between- and within-plant signalling

    Editorial: Grassland-invertebrate interactions: Plant productivity, resilience and community dynamics

    Get PDF
    This research topic reports new findings and concepts on grassland invertebrate interactions in semi-natural and improved grasslands with emphasis on the effects of climate change, invasive species, and sustainable control methods of invasive pests. Five reviews, one opinion paper, two methods, and fourteen research articles explore the influence of biotic and environmental factors and management practices on the communities of invertebrates and their relationships with plants and natural enemies. The majority of contributions is dedicated to Australian and New Zealand grassland systems resulting from an invitation to the participants of the ninth Australasian Conference on Grassland Invertebrate Ecology held in Sydney in April 2016. Several studies on invertebrate communities in European grasslands complement our Topic

    The role of root-produced volatile secondary metabolites in mediating soil interactions

    Get PDF
    Since Darwin’s suggestion that natural selection accounts for the diversity of plant morphological and chemical attributes, thousands of papers have been devoted to the ecology and evolution of plant secondary metabolites. Indeed, it is estimated that plants may produce over 200, 000 different compounds, the majority of which are classified as secondary metabolites (Pichersky and Gang 2000). The incredible diversity of particular classes of secondary metabolites is stunning. Terpenes, for example, comprise more than 30’000 described compounds (Hartmann 2007). Such incredible diversity of forms can be originated from various enzymes catalyzing the binding of different precursors (Wojciechowski 2003), promiscuity of enzymes (including multiple product and substrate enzyme specificity), changes in cellular compartmentalization patterns (Pichersky and Gang 2000; Bauer et al. 2010), or the matrix-like structure of pathways where natural products are formed by elaborate arrays of enzymes, concertedly controlled by the expression of their respective genes (Lewinsohn and Gijzen 2009)
    corecore