60 research outputs found
Recommended from our members
Climate warming and plant biomechanical defences: silicon addition contributes to herbivore suppression in a pasture grass
Plants, notably the Poaceae, often accumulate large amounts of silicon (Si) from the soil. Si has multiple functional roles, particularly for alleviating abiotic and biotic stresses (e.g., defence against herbivores). Recent evidence suggests that environmental change, including temperature changes, can diminish Si accumulation which could affect functions such as herbivore defence.
Using a field warming experiment, we grew a pasture grass (Phalaris aquatica) that was either supplemented or untreated with Si (+Si and −Si, respectively) under ambient and elevated (+2.8°C above ambient) air temperatures. We quantified soil water, plant growth rates, Si accumulation, leaf biomechanical properties and in situ relative growth rates of a herbivorous global insect pest (Helicoverpa armigera).
Si supplementation promoted shoot and root biomass by c. 48% and 61%, respectively under ambient temperatures, but these gains were not apparent under warmed conditions.
Warmer temperatures reduced Si uptake by −Si plants by c. 17%, potentially due to the lower levels of soil water content in warmed plots. Si supplementation, however, increased Si accumulation in leaves by c. 24% in warmed plots restoring Si levels to those seen under ambient temperatures.
Si supplementation enhanced biomechanical properties in the leaves, but this was only statistically significant under ambient temperatures; leaves of +Si plants required 42% more force to fracture and were 30% tougher at the midrib than leaves of −Si plants. The relative growth rates of H. armigera declined by 56% when feeding on +Si plants under ambient temperatures, and while Si supplementation caused a trend towards declining herbivore growth rates under warmer conditions, this was not statistically significant.
We conclude that climate warming may mitigate the beneficial effects of Si on Phalaris aquatica in the short term, potentially by reducing Si uptake. While Si uptake can be restored with Si supplementation, Si‐enhanced biomechanical defences against a global pest may not be fully restored under warmer temperatures
Prospects for the development of odour baits to control the tsetse flies Glossina tachinoides and G. palpalis s.l.
Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced (~5×) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2×) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (~5×) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (~500 mg/h) doses of acetone also consistently produced significant but slight (~1.6×) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only ~50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short-range interaction
Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin
Recommended from our members
Silicon uptake by a pasture grass experiencing simulated grazing is greatest under elevated precipitation
Background
Grasses are hyper-accumulators of silicon (Si) and often up-regulate Si following herbivory. Positive correlations exist between Si and plant water content, yet the extent to which Si uptake responses can be mediated by changes in soil water availability has rarely been studied and never, to our knowledge, under field conditions. We used field-based rain-exclusion shelters to investigate how simulated grazing (shoot clipping) and altered rainfall patterns (drought and elevated precipitation, representing 50% and 150% of ambient precipitation levels, respectively) affected initial patterns of root- and shoot-Si uptake in a native Australian grass (Microlaena stipoides) in Si-supplemented and untreated soils.
Results
Si supplementation increased soil water retention under ambient and elevated precipitation but not under drought, although this had little effect on Si uptake and growth (tiller numbers or root biomass) of M. stipoides. Changes in rainfall patterns and clipping had strong individual effects on plant growth and Si uptake and storage, whereby clipping increased Si uptake by M. stipoides under all rainfall treatments but to the greatest extent under elevated precipitation. Moreover, above-ground–below-ground Si distribution only changed following elevated precipitation by decreasing the ratio of root:shoot Si concentrations.
Conclusions
Results highlight the importance of soil water availability for Si uptake and suggest a role for both active and passive Si transport mechanisms. Such manipulative field studies may provide a more realistic insight into how grasses initially respond to herbivory in terms of Si-based defence under different environmental conditions
Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats
While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.info:eu-repo/semantics/publishedVersio
Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?
peer reviewedBackground
Aboveground, plants release volatile organic compounds (VOCs) that act as chemical
signals between neighbouring plants. It is now well documented that VOCs emitted by
the roots in the plant rhizosphere also play important ecological roles in the soil
ecosystem, notably in plant defence because they are involved in interactions between
plants, phytophagous pests and organisms of the third trophic level. The roles played
by root-emitted VOCs in between- and within-plant signalling, however, are still poorly
documented in the scientific literature.
Scope
Given that (1) plants release volatile cues mediating plant-plant interactions
aboveground, (2) roots can detect the chemical signals originating from their
neighbours, and (3) roots release VOCs involved in biotic interactions belowground,
the aim of this paper is to discuss the roles of VOCs in between- and within-plant
signalling belowground. We also highlight the technical challenges associated with the
analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated
root-root interactions.
Conclusions
We conclude that root-root interactions mediated by volatile cues deserve more
research attention and that both the analytical tools and methods developed to study
the ecological roles played by VOCs in interplant signalling aboveground can be
adapted to focus on the roles played by root-emitted VOCs in between- and within-plant
signalling
Editorial: Grassland-invertebrate interactions: Plant productivity, resilience and community dynamics
This research topic reports new findings and concepts on grassland invertebrate interactions in semi-natural and improved grasslands with emphasis on the effects of climate change, invasive species, and sustainable control methods of invasive pests. Five reviews, one opinion paper, two methods, and fourteen research articles explore the influence of biotic and environmental factors and management practices on the communities of invertebrates and their relationships with plants and natural enemies. The majority of contributions is dedicated to Australian and New Zealand grassland systems resulting from an invitation to the participants of the ninth Australasian Conference on Grassland Invertebrate Ecology held in Sydney in April 2016. Several studies on invertebrate communities in European grasslands complement our Topic
The role of root-produced volatile secondary metabolites in mediating soil interactions
Since Darwin’s suggestion that natural selection accounts for the diversity of plant morphological and chemical attributes, thousands of papers have been devoted to the ecology and evolution of plant secondary metabolites. Indeed, it is estimated that plants may produce over 200, 000 different compounds, the majority of which are classified as secondary metabolites (Pichersky and Gang 2000). The incredible diversity of particular classes of secondary metabolites is stunning. Terpenes, for example, comprise more than 30’000 described compounds (Hartmann 2007). Such incredible diversity of forms can be originated from various enzymes catalyzing the binding of different precursors (Wojciechowski 2003), promiscuity of enzymes (including multiple product and substrate enzyme specificity), changes in cellular compartmentalization patterns (Pichersky and Gang 2000; Bauer et al. 2010), or the matrix-like structure of pathways where natural products are formed by elaborate arrays of enzymes, concertedly controlled by the expression of their respective genes (Lewinsohn and Gijzen 2009)
- …