36 research outputs found

    La emergencia viral como consecuencia de la interacción entre las variabilidades genéticas del virus y huésped

    Get PDF
    La variabilidad genética en las poblaciones de huéspedes para la susceptibilidad al patógeno es esencial para la propagación de un virus emergente. Los modelos matemáticos predicen que la tasa de difusión del patógeno se frena a medida que aumenta la frecuencia y la diversidad de alelos de resistencia en la población huésped148,230. Sin embargo, las pruebas experimentales de esta hipótesis son escasas. Por ese motivo, este trabajo aborda la cuestión de cuánta heterogeneidad genética del huésped es necesaria para el cambio del destino evolutivo del virus. El modelo de patosistema experimental utilizado en este trabajo está compuesto por el Virus del grabado del tabaco (TEV), aislado At17b (TEV-At17b), previamente adaptado por Agudelo-Romero et al. (2008)5 al ecotipo Ler-0 de A. thaliana, y por diferentes ecotipos de esta planta. En la primera parte de la Tesis, aplicando el método de hibridación de micromatrices de ARN, se caracterizó el transcriptoma de seis ecotipos de A. thaliana (Di-2, Ei-2, Ler-0 Oy-0, St-0 y Wt-1) tras ser infectados con el aislado TEV-At17b. El resultado de la infección se caracterizó fenotípicamente y también se determinó el patrón de expresión de genes alterados por la infección, así como las diferencias entre los distintos ecotipos. La respuesta era heterogénea, si bien los ecotipos se pudieron agrupar en dos grupos según su perfil transcriptómico. El propósito de la segunda parte del proyecto era explorar el efecto de la variabilidad genética intraespecífica del huésped en la dinámica de adaptación del virus. Con este fin, se realizó por triplicado un experimento de evolución con TEV-At17b en cinco ecotipos diferentes de A. thaliana (Di-2, Ei-2, Ler-0, St-0 y Wt-1). Después de la fase de evolución, se inocularon todos los ecotipos con todos los linajes virales evolucionados en un experimento de infección cruzada y se evaluaron la infectividad, la eficacia y la virulencia de cada combinación virus-ecotipo. Los resultados obtenidos se utilizaron para construir una red de infecciones. Las poblaciones de TEV, evolucionadas en cada uno de los cinco ecotipos de A. thaliana, aumentaron su eficacia, virulencia e infectividad en cada huésped de una manera compatible con un modelo gen-a-gen de interacciones parásito-huésped: los ecotipos difíciles de infectar fueron infectados por linajes generalistas, mientras que los ecotipos más susceptibles fueron infectados por cualquier linaje evolucionado. A continuación se caracterizaron los genomas completos de los virus evolucionados y se encontraron siete casos de mutaciones convergentes. En esta parte del proyecto, para obtener un mejor conocimiento de la base molecular de la interacción gen-a-gen, se generaron todas estas mutaciones de forma individual, así como combinaciones específicas, y se probaron sus efectos en plantas de los cinco ecotipos. Además, se evaluó la topografía del paisaje adaptativo subyacente. Usando el método de micromatrices de ARN, en el último capítulo de la Tesis se identificó la respuesta transcriptómica de cada ecotipo a la infección del virus evolucionado en simpatría. Los ecotipos del huésped se clasificaron en grupos de acuerdo a las similitudes en sus perfiles de expresión génica. Se evaluaron las categorías funcionales de los genes afectados por la infección y se determinaron las intersecciones y diferencias entre los ecotipos. A continuación, se caracterizó la respuesta transcriptómica del huésped ancestral Ler-0 a la infección con cada uno de los linajes evolucionados, cada uno adaptado a un ecotipo local diferente. Los cambios en las interacciones virus-huésped a nivel de expresión génica en Ler-0 eran homogéneos, pero mostraban cierta heterogeneidad en las categorías funcionales enriquecidas. Por último, se analizó la respuesta transcriptómica inducida por la cepa viral más especializada y la más generalista en los cinco ecotipos. Se encontró que el virus especialista inducía una respuesta más fuerte y más heterogénea en todos los ecotipos, mientras que el virus generalista alteraba la expresión génica de manera similar en todos los ecotipos del huésped. Por tanto, la estrategia adaptativa de un virus especialista parecía ser específica para su ecotipo simpátrico, pagando un coste de eficacia en su interacción con los huéspedes alopátricos. Por el contrario, la estrategia adaptativa del virus generalista consistía en la alteración de vías comunes para todos los ecotipos

    Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection

    Get PDF
    The use of high-throughput transcript profiling techniques has opened the possibility of identifying, in a single experiment, multiple host mRNAs whose levels of accumulation are altered in response to virus infection. Several studies have used this approach to analyze the response of Arabidopsis thaliana to the infection by different RNA and DNA viruses. However, the possible differences in response of genetically heterogeneous ecotypes of the plant to the same virus have never been addressed before. Here we have used a strain of Tobacco etch potyvirus (TEV) experimentally adapted to A. thaliana ecotype Ler-0 and a set of seven plant ecotypes to tackle this question. Each ecotype was inoculated with the same amount of the virus and the outcome of infection characterized phenotypically (i.e., virus infectivity, accumulation, and symptoms development). Using commercial microarrays containing probes for more than 43,000 A. thaliana transcripts, we explored the effect of viral infection on the plant transcriptome. In general, we found that ecotypes differ in the way they perceive and respond to the virus. Some ecotypes developed strong symptoms and accumulated large amounts of viral genomes, while others only developed mild symptoms and accumulated less virus. At the transcriptomic level, ecotypes could be classified into two groups according to the particular genes whose expression was altered upon infection. Moreover, a functional enrichment analyses showed that the two groups differed in the nature of the altered biological processes. For the group constituted by ecotypes developing milder symptoms and allowing for lower virus accumulation, genes involved in abiotic stresses and in the construction of new tissues tend to be up-regulated. For those ecotypes in which infection was more severe and productive, defense genes tend to be up-regulated, deviating the necessary resources from building new tissues

    Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses

    Get PDF
    BackgroundPipo was recently described as a new ORF encoded within the genome of the Potyviridae family members (PNAS 105:5897–5902, 2008). It is embedded within the P3 cistron and is translated in the +2 reading frame relative to the potyviral long ORF as the P3N-PIPO fusion protein. In this work, we first collected pipo nucleotide sequences available for different isolates of 48 Potyvirus species. Second, to determine the biological implications of variation in pipo length, we measured infectivity, viral accumulation, cell-to-cell and systemic movements for two Turnip mosaic virus (TuMV) variants with pipo alleles of different length in three different susceptible host species, and tested for differences between the two variants.ResultsIn addition to inter-specific variation, there was high variation in the length of the PIPO protein among isolates within species (ranging from 1 to 89 amino acids). Furthermore, selection analyses on the P3 cistron did not account for the existence of stop codons in the pipo ORF, but showed that positive selection was significant in the overlapping region for Potato virus Y (PVY) and TuMV. In some cases, variability in length was associated with host species, geographic provenance and/or other strain features. We found significant empirical differences among the phenotypes associated with TuMV pipo alleles, though the magnitude and sign of the effects were host-dependent.ConclusionsThe combination of computational molecular evolution analyses and experiments stemming from these analyses provide clues about the selective pressures acting upon the different-length pipo alleles and show that variation in length may be maintained by host-driven selection

    Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection

    Get PDF
    This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host-driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard-to-infect ecotypes were infected by generalist viruses whereas easy-to-infect ecotypes were infected by all viruses, as predicted by a gene-for-gene model of infection.We acknowledge grant BFU2012–30805 from the Spanish Ministerio de Economía y Competitividad to SFE. JMC was supported by a JAE-doc contract from CSIC. JH was supported by a pre-doctoral fellowship from Ministerio de Economía y CompetitividadPeer reviewe

    A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes

    Full text link
    [EN] Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.We thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance and the rest of the EvolSysVir lab for fruitful discussions. This work was supported by grants PID2019-103998GB-I00 and PGC2018-101410-B-I00 (Agencia Estatal de Investigacion - FEDER) to S.F.E. and G.R., respectively, and PROMETEO/2019/012 (Generalitat Valenciana) to S.F.E.Martínez, F.; Carrasco, JL.; Toft, C.; Hillung, J.; Giménez-Santamarina, S.; Yenush, L.; Rodrigo Tarrega, G.... (2023). A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Communications Biology. 6(1):1-18. https://doi.org/10.1038/s42003-023-04427-81186

    Temporal Dynamics of Intrahost Molecular Evolution for a Plant RNA Virus

    Full text link
    [EN] Populations of plant RNA viruses are highly polymorphic in infected plants, which may allow rapid within-host evolution. To understand tobacco etch potyvirus (TEV) evolution, longitudinal samples from experimentally evolved populations in the natural host tobacco and from the alternative host pepper were phenotypically characterized and genetically analyzed. Temporal and compartmental variabilities of TEV populations were quantified using high throughput Illumina sequencing and population genetic approaches. Of the two viral phenotypic traits measured, virulence increased in the novel host but decreased in the original one, and viral load decreased in both hosts, though to a lesser extent in the novel one. Dynamics of population genetic diversity were also markedly different among hosts. Population heterozygosity increased in the ancestral host, with a dominance of synonymous mutations fixed, whereas it did not change or even decreased in the new host, with an excess of nonsynonymous mutations. All together, these observations suggest that directional selection is the dominant evolutionary force in TEV populations evolving in a novel host whereas either diversifying selection or random genetic drift may play a fundamental role in the natural host. To better understand these evolutionary dynamics, we developed a computer simulation model that incorporates the effects of mutation, selection, and drift. Upon parameterization with empirical data from previous studies, model predictions matched the observed patterns, thus reinforcing our idea that the empirical patterns of mutation accumulation represent adaptive evolution.The authors thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance, our labmates for useful discussions and suggestions, and Dr Jose A. Daros for gifting us the pMTEV infectious clone. This work was supported by grants BFU2009-06993 and BFU2012-30805 from the Spanish Ministry of Economy and Competitiveness (MINECO), grant PROMETEOII/2014/021 from Generalitat Valenciana, and by the European Commission 7th Framework Programme (FP7-ICT-611640 FET Proactive: Evolving Living Technologies) EvoEvo project to S.F.E. J.M.C. was supported by a JAE-doc postdoctoral contract from CSIC. A.W. was supported by the EvoEvo project. J.H. was recipient of a predoctoral contract from MINECO. M.P.Z. was supported by a Juan de la Cierva postdoctoral contract from MINECO.Cuevas, JM.; Willemsen, A.; Hillung, J.; Zwart, MP.; Elena Fito, SF. (2015). Temporal Dynamics of Intrahost Molecular Evolution for a Plant RNA Virus. Molecular Biology and Evolution. 32(5):1132-1147. https://doi.org/10.1093/molbev/msv028S1132114732

    Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

    Full text link
    This article has been accepted for publication in Virus Evolution published by Oxford University Press.[EN] Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen.We thank Francisca de la Iglesia for continuous excellent technical support. Work was supported by Spain's Agencia Estatal de Investigacion-FEDER grant BFU2015-65037-P and Generalitat Valenciana grant GRISOLIA/2018/005 to S.F.E. R.G. was supported by Spain's Agencia Estatal de Investigacion pre-doctoral contract BES-2016-077078.González, R.; Butkovic, A.; Elena Fito, SF. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evolution. 5(2):1-12. https://doi.org/10.1093/ve/vez024S11252Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9(4), 467-484. doi:10.1111/j.1461-0248.2005.00879.xAnttila, J., Kaitala, V., Laakso, J., & Ruokolainen, L. (2015). Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks. PLOS ONE, 10(12), e0145511. doi:10.1371/journal.pone.0145511Bascompte, J., Jordano, P., Melian, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383-9387. doi:10.1073/pnas.1633576100Baylis, M. (2017). Potential impact of climate change on emerging vector-borne and other infections in the UK. Environmental Health, 16(S1). doi:10.1186/s12940-017-0326-1Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010Bennett, A. F., Lenski, R. E., & Mittler, J. E. (1992). EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT. Evolution, 46(1), 16-30. doi:10.1111/j.1558-5646.1992.tb01981.xBerngruber, T. W., Lion, S., & Gandon, S. (2015). Spatial Structure, Transmission Modes and the Evolution of Viral Exploitation Strategies. PLOS Pathogens, 11(4), e1004810. doi:10.1371/journal.ppat.1004810Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). BMC Ecology, 6(1), 9. doi:10.1186/1472-6785-6-9Boots, M., & Mealor, M. (2007). Local Interactions Select for Lower Pathogen Infectivity. Science, 315(5816), 1284-1286. doi:10.1126/science.1137126Boots, M., & Sasaki, A. (1999). ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1432), 1933-1938. doi:10.1098/rspb.1999.0869Boots, M., & Sasaki, A. (2002). Parasite‐Driven Extinction in Spatially Explicit Host‐Parasite Systems. The American Naturalist, 159(6), 706-713. doi:10.1086/339996BROCKHURST, M. A., BUCKLING, A., & RAINEY, P. B. (2006). Spatial heterogeneity and the stability of host-parasite coexistence. Journal of Evolutionary Biology, 19(2), 374-379. doi:10.1111/j.1420-9101.2005.01026.xBrown, J. K. M., & Tellier, A. (2011). Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology. Annual Review of Phytopathology, 49(1), 345-367. doi:10.1146/annurev-phyto-072910-095301Chabas, H., Lion, S., Nicot, A., Meaden, S., van Houte, S., Moineau, S., … Gandon, S. (2018). Evolutionary emergence of infectious diseases in heterogeneous host populations. PLOS Biology, 16(9), e2006738. doi:10.1371/journal.pbio.2006738Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification of Turnip mosaic virus Isolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901Comins, H. N., Hassell, M. P., & May, R. M. (1992). The Spatial Dynamics of Host--Parasitoid Systems. The Journal of Animal Ecology, 61(3), 735. doi:10.2307/5627Cornwall, D. H., Kubinak, J. L., Zachary, E., Stark, D. L., Seipel, D., & Potts, W. K. (2018). Experimental manipulation of population-level MHC diversity controls pathogen virulence evolution inMus musculus. Journal of Evolutionary Biology, 31(2), 314-322. doi:10.1111/jeb.13225Cuevas, J. M., Moya, A., & Elena, S. F. (2003). Evolution of RNA virus in spatially structured heterogeneous environments. Journal of Evolutionary Biology, 16(3), 456-466. doi:10.1046/j.1420-9101.2003.00547.xDi Giallonardo, F., & Holmes, E. C. (2015). Viral biocontrol: grand experiments in disease emergence and evolution. Trends in Microbiology, 23(2), 83-90. doi:10.1016/j.tim.2014.10.004Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5Fry, J. D. (1996). The Evolution of Host Specialization: Are Trade-Offs Overrated? The American Naturalist, 148, S84-S107. doi:10.1086/285904Furio, V., Garijo, R., Duran, M., Moya, A., Bell, J. C., & Sanjuan, R. (2012). Relationship between within-Host Fitness and Virulence in the Vesicular Stomatitis Virus: Correlation with Partial Decoupling. Journal of Virology, 86(22), 12228-12236. doi:10.1128/jvi.00755-12Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.xLocal adaptation and gene-for-gene coevolution in a metapopulation model. (1996). Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1373), 1003-1009. doi:10.1098/rspb.1996.0148Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15(3), 451-462. doi:10.1046/j.1420-9101.2002.00402.xGanusov, V. V., Bergstrom, C. T., & Antia, R. (2002). WITHIN-HOST POPULATION DYNAMICS AND THE EVOLUTION OF MICROPARASITES IN A HETEROGENEOUS HOST POPULATION. Evolution, 56(2), 213-223. doi:10.1111/j.0014-3820.2002.tb01332.xGarrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420Gavrilets, S., & Gibson, N. (2002). Fixation probabilities in a spatially heterogeneous environment. Population Ecology, 44(2), 51-58. doi:10.1007/s101440200007HARAGUCHI, Y., & SASAKI, A. (2000). The Evolution of Parasite Virulence and Transmission Rate in a Spatially Structured Population. Journal of Theoretical Biology, 203(2), 85-96. doi:10.1006/jtbi.1999.1065Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458HUGHES, W. O. H., & BOOMSMA, J. J. (2006). Does genetic diversity hinder parasite evolution in social insect colonies? Journal of Evolutionary Biology, 19(1), 132-143. doi:10.1111/j.1420-9101.2005.00979.xKassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15(2), 173-190. doi:10.1046/j.1420-9101.2002.00377.xKassen, R., & Bell, G. (1998). Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity, 80(6), 732-741. doi:10.1046/j.1365-2540.1998.00329.xKoonin, E. V., Wolf, Y. I., Nagasaki, K., & Dolja, V. V. (2008). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology, 6(12), 925-939. doi:10.1038/nrmicro2030Kubinak, J. L., Cornwall, D. H., Hasenkrug, K. J., Adler, F. R., & Potts, W. K. (2015). Serial infection of diverse host ( Mus ) genotypes rapidly impedes pathogen fitness and virulence. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20141568. doi:10.1098/rspb.2014.1568Leggett, H. C., Buckling, A., Long, G. H., & Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in Ecology & Evolution, 28(10), 592-596. doi:10.1016/j.tree.2013.07.002Lively, C. M. (2010). The Effect of Host Genetic Diversity on Disease Spread. The American Naturalist, 175(6), E149-E152. doi:10.1086/652430Malpica, J. M., Sacristán, S., Fraile, A., & García-Arenal, F. (2006). Association and Host Selectivity in Multi-Host Pathogens. PLoS ONE, 1(1), e41. doi:10.1371/journal.pone.0000041McLeish, M., Sacristán, S., Fraile, A., & García-Arenal, F. (2017). Scale dependencies and generalism in host use shape virus prevalence. Proceedings of the Royal Society B: Biological Sciences, 284(1869), 20172066. doi:10.1098/rspb.2017.2066Moreno-Gámez, S., Stephan, W., & Tellier, A. (2013). Effect of disease prevalence and spatial heterogeneity on polymorphism maintenance in host-parasite interactions. Plant Pathology, 62, 133-141. doi:10.1111/ppa.12131Morens, D. M., & Fauci, A. S. (2013). Emerging Infectious Diseases: Threats to Human Health and Global Stability. PLoS Pathogens, 9(7), e1003467. doi:10.1371/journal.ppat.1003467Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. doi:10.1073/pnas.0601602103Papaïx, J., David, O., Lannou, C., & Monod, H. (2013). Dynamics of Adaptation in Spatially Heterogeneous Metapopulations. PLoS ONE, 8(2), e54697. doi:10.1371/journal.pone.0054697Parratt, S. R., Numminen, E., & Laine, A.-L. (2016). Infectious Disease Dynamics in Heterogeneous Landscapes. Annual Review of Ecology, Evolution, and Systematics, 47(1), 283-306. doi:10.1146/annurev-ecolsys-121415-032321Pfennig, K. S. (2001). Evolution of pathogen virulence: the role of variation in host phenotype. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1468), 755-760. doi:10.1098/rspb.2000.1582Regoes, R. R., Nowak, M. A., & Bonhoeffer, S. (2000). EVOLUTION OF VIRULENCE IN A HETEROGENEOUS HOST POPULATION. Evolution, 54(1), 64-71. doi:10.1111/j.0014-3820.2000.tb00008.xRodelo-Urrego, M., Pagán, I., González-Jara, P., Betancourt, M., Moreno-Letelier, A., Ayllón, M. A., … García-Arenal, F. (2013). Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Molecular Ecology, 22(8), 2325-2340. doi:10.1111/mec.12232Rodelo-Urrego, M., García-Arenal, F., & Pagán, I. (2015). The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico. Virus Evolution, 1(1). doi:10.1093/ve/vev004RodrÍguez, D. (2001). Models of Infectious Diseases in Spatially Heterogeneous Environments. Bulletin of Mathematical Biology, 63(3), 547-571. doi:10.1006/bulm.2001.0231Rosenthal, S. R., Ostfeld, R. S., McGarvey, S. T., Lurie, M. N., & Smith, K. F. (2015). Redefining disease emergence to improve prioritization and macro-ecological analyses. One Health, 1, 17-23. doi:10.1016/j.onehlt.2015.08.001Rubio, B., Cosson, P., Caballero, M., Revers, F., Bergelson, J., Roux, F., & Schurdi‐Levraud, V. (2018). Genome‐wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (Tu MV ) interactions in the field. New Phytologist, 221(4), 2026-2038. doi:10.1111/nph.15507Schmid-Hempel, P., & Koella, J. C. (1994). Variability and its implications for host-parasite interactions. Parasitology Today, 10(3), 98-102. doi:10.1016/0169-4758(94)90007-8Simko, I., & Piepho, H.-P. (2012). The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology®, 102(4), 381-389. doi:10.1094/phyto-07-11-0216Thrall, P. H., & Burdon, J. J. (2003). Evolution of Virulence in a Plant Host-Pathogen Metapopulation. Science, 299(5613), 1735-1737. doi:10.1126/science.1080070Thrall, P. H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P. N., Barrett, L. G., & Burdon, J. J. (2012). Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 15(5), 425-435. doi:10.1111/j.1461-0248.2012.01749.xVurro, M., Bonciani, B., & Vannacci, G. (2010). Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security, 2(2), 113-132. doi:10.1007/s12571-010-0062-7Weitz, J. S., Poisot, T., Meyer, J. R., Flores, C. O., Valverde, S., Sullivan, M. B., & Hochberg, M. E. (2013). Phage–bacteria infection networks. Trends in Microbiology, 21(2), 82-91. doi:10.1016/j.tim.2012.11.003Whitlock, M. C. (1996). The Red Queen Beats the Jack-Of-All-Trades: The Limitations on the Evolution of Phenotypic Plasticity and Niche Breadth. The American Naturalist, 148, S65-S77. doi:10.1086/285902Whitlock, M. C., & Gomulkiewicz, R. (2005). Probability of Fixation in a Heterogeneous Environment. Genetics, 171(3), 1407-1417. doi:10.1534/genetics.104.040089Woolhouse, M. E. J., & Dye, C. (2001). Preface. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 981-982. doi:10.1098/rstb.2001.0899Yates, A., Antia, R., & Regoes, R. R. (2006). How do pathogen evolution and host heterogeneity interact in disease emergence? Proceedings of the Royal Society B: Biological Sciences, 273(1605), 3075-3083. doi:10.1098/rspb.2006.368

    Luria-Delbrück estimation of Turnip mosaic virus mutation rate in vivo

    Get PDF
    [EN] A potential drawback of recent antiviral therapies based on the transgenic expression of artificial microRNAs is the ease with which viruses may generate escape mutations. Using a variation of the classic Luria-Delbruck fluctuation assay, we estimated that the spontaneous mutation rate in the artificial microRNA (amiR) target of a plant virus was ca.6 x 10(-5) per replication event.This work was supported by grants BFU2009-06993 from the Spanish Ministerio de Ciencia e Innovación, RGP12/2008 from the Human Frontier Science Program Organization, and PROMETEO2010/019 from Generalitat Valenciana to S.F.E.; by CSIC grant 2010TW0015 to J.-A.D.; and by U.S. National Institutes of Health grants R01GM079843-01 and ARRA PDS#35063 and EC grant FP7231807 to P.J.G. F.M. was supported by a fellowship from Universidad Politénica de Valencia, J.H. was supported by a fellowship from the Spanish Ministerio de Ciencia e Innovación, and J.M.C. was contracted under the CSIC JAE-Doc program.De La Iglesia Jordán, F.; Martinez Garcia, F.; Hillung, J.; Cuevas Torrijos, JM.; Gerrish, PJ.; Daros Arnau, JA.; Elena Fito, SF. (2012). Luria-Delbrück estimation of Turnip mosaic virus mutation rate in vivo. Journal of Virology. 86(6):3386-3388. https://doi.org/10.1128/JVI.06909-11S3386338886

    The transcriptomics of an experimentally evolved plant-virus interaction

    Full text link
    [EN] Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist.We thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance and our labmates for useful discussions and suggestions. This work was supported by grants BFU2012-30805 from the Spanish Ministry of Economy and Competitiveness (MINECO), PROMETEOII/2014/021 from Generalitat Valenciana and EvoEvo (ICT610427) from the European Commission 7th Framework Program to SFE, and grant PROMETEOII/2014/025 to JD. JMC was supported by a JAE-doc postdoctoral contract from CSIC. JH was recipient of a predoctoral contract from MINECO.Hillung, J.; García-García, F.; Dopazo, J.; Cuevas Torrijos, JM.; Elena Fito, SF. (2016). The transcriptomics of an experimentally evolved plant-virus interaction. Scientific Reports. 6:1-19. https://doi.org/10.1038/srep24901S1196Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).Holmes, E. C. The comparative genomics of viral emergence. Proc. Natl. Acad. Sci. USA 107, 1742–1746 (2010).Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010).Elena, S. F. et al. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 24, 287–293 (2011).Holmes, E. C. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 40, 353–372 (2009).Domingo, E. Mechanisms of viral emergence. Vet. Res. 41, 38 (2010).King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations? Heredity 109, 199–203 (2012).Kearney, C. M., Thomson, M. J. & Roland, K. E. Genome evolution of Tobacco mosaic virus populations during long-term passaging in a diverse range of hosts. Arch. Virol. 144, 1513–1526 (1999).Tan, Z. et al. Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus . J. Gen. Virol. 88, 501–510 (2005).Rico, P., Ivars, P., Elena, S. F. & Hernández, C. Insights into the selective pressures restricting Pelargonium flower break virus genome variability: evidence for host adaptation. J. Virol. 80, 8124–8132 (2006).Wallis, C. M. et al. Adaptation of Plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J. Gen. Virol. 88, 2839–2845 (2007).Agudelo-Romero, P., de la Iglesia, F. & Elena, S. F. The pleiotropic cost of host-specialization in tobacco etch potyvirus. Infect. Genet. Evol. 8, 806–814 (2008).Bedhomme, S., Lafforgue, G. & Elena, S. F. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Mol. Biol. Evol. 29, 1481–1492 (2012).García-Arenal, F. & Fraile A. Trade-offs in host range evolution of plant viruses. Plant Pathol. 62, S2–S9. (2013).Calvo, M., Malinowski, T. & García, J. A. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana- propagated Plum pox virus C isolates to either host. Mol. Plant-Microbe Interact. 27, 136–149 (2014).Cuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P. & Elena, S. F. Temporal dynamics of intra-host molecular evolution for a plant RNA virus. Mol. Biol. Evol. 32, 1132–1147 (2015).Minicka, J., Rymelska, N., Elena, S. F., Czerwoniec, A. & Hasiów-Jaroszewska, B. Molecular evolution of Pepino mosaic virus during long-term passaging in different hosts and its impact on virus virulence. Ann. Appl. Biol. 166, 389–401 (2015).Agudelo-Romero, P., Carbonell, P., Pérez-Amador, M. A. & Elena, S. F. Virus adaptation by manipulation of host's gene expression. PLos ONE 3, e2397 (2008).Weigel, D. Natural variation in arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2–22 (2012).Mahajan, S. K., Chisholm, S. T., Whitham, S. A. & Carrington, J. C. Identification and characterization of a locus (RTM1) that restricts long-distance movement of Tobacco etch virus in Arabidopsis thaliana . Plant J. 14, 177–186 (1998).Whitham, S. A., Yamamoto, M. L. & Carrington, J. C. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 96, 772–777 (1999).Whitham, S. A., Anderberg, R. J., Chisholm, S. T. & Carrington, J. C. Arabidopsis RTM2 gene is necessary for specific restriction of Tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12, 569–582 (2000).Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L. & Carrington, J. C. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of Tobacco etch virus . Proc. Natl. Acad. Sci. USA 97, 489–494 (2000).Chisholm, S. T., Parra, M. A., Anderberg, R. J. & Carrington, J. C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of Tobacco etch virus . Plant Physiol. 127, 1667–1675 (2001).Cosson, P. et al. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a MEPRIN and TRAF homology domain-containing protein. Plant Physiol. 154, 222–232 (2010).Cosson, P., Sofer, L., Schurdi-Levraud, V. & Revers, F. A member of a new plant gene family encoding a MEPRIN and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses. Plant Signal. Behav. 5, 1321–1323 (2010).Agudelo-Romero P. et al. Changes in gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus . Virol. J. 5, 92 (2008).Lalić, J., Agudelo-Romero, P., Carrasco, P. & Elena, S. F. Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Phil. Trans. R. Soc. B 65, 1997–2008 (2010).Hillung, J., Cuevas, J. M. & Elena, S. F. Transcript profiling of different Arabidopsis thaliana ecotypes in response to tobacco etch potyvirus infection. Front. Microbiol. 3, 229 (2012).Hillung, J., Cuevas, J. M. & Elena, S. F. Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Phil. Trans. R. Soc. B 370, 20140292 (2015).Hillung, J., Cuevas, J. M., Valverde, S. & Elena, S. F. Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection. Evolution 68, 2467–2480 (2014).Sartor, M. A., Leikauf, G. D. & Medvedovic, M. LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25, 211–217 (2009).Montaner, D. & Dopazo, J. Multidimensional gene set analysis of genomic data. PLos ONE 5, e10348 (2010).Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLos ONE 6, e21800 (2011).Grennan, A. K. Regulation of starch metabolism in Arabidopsis leaves. Plant Physiol. 142, 1343–1345 (2006).Johnson, P. R. & Ecker, J. R. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32, 227–254 (1998).Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151 (2002).Binns, D. et al. QuickGO: a web-based tool for gene ontology searching. Bioinformatics 25, 3045–3046 (2009).Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98, 12837–12842 (2001).Luna, E. et al. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24, 183–193 (2011).Ghoshroy, S., Freedman, K., Lartey, R. & Citovsky, V. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13, 591–602 (1998).Hayashi, N. et al. Nef of HIV-1 interacts directly with calcium-bound calmodulin. Protein Sci. 11, 529–537 (2002).Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipic-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).Rojas, M. R. et al. Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125 (2001).Padmanabhan, M. S., Goregaoker, S. P., Golem, S., Shiferaw, H. & Culver, J. N. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 79, 2549–2558 (2005).Lurin, C. et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103 (2004).Takenaka, M., Verbitskiy, D., Zehrmann, A. & Brennicke, A. Reverse genetic screening identifies five E-class PPR proteins involved in RNA editing in mitochondria of Arabidopsis thaliana . J. Biol. Chem. 285, 27122–27129 (2010).Gillissen, B. et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis . Plant Cell 12, 291–300 (2000).Li, S., Fu, Q., Chen, L., Huang, W. & Yu, D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233, 1237–1252 (2011).Divol, F. et al. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell. Environ. 30, 187–201 (2007).Vissenberg, K., Fry, S. C., Pauly, M., Höfte, H. & Verbelen, J. P. XTH acts at the microfibril-matrix interface during cell elongation. J. Exp. Bot. 56, 673–683 (2005).Ham, B. K., Li, G., Kang, B. H., Zeng, F. & Lucas, W. J. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell 24, 3630–3648 (2012).Bae, M. S., Cho, E. J., Choi, E. Y. & Park, O. K. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36, 652–663 (2003).Zargar, S. M. et al. Correlation analysis of proteins responsive to Zn, Mn, or Fe deficiency in Arabidopsis roots based on iTRAQ analysis. Plant Cell Rep. 34, 157–166 (2015).Kleffmann, T. et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362 (2004).Zybailov, B. et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLos ONE 3, e1994 (2008).Wu, P. et al. Phosphate starvation triggers distinct alterations of gene expression in Arabidopsis roots and leaves. Plant Physiol. 132, 1260–1271 (2003).Oh, S. A., Lee, S. Y., Chung, I. K., Lee, C. H. & Nam H. G. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol. Biol. 30, 739–754 (1996).Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M. & Maclean, D. J. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol. Biochem. 43, 997–1005 (2005).Fernández-Calvino, L. et al. Activation of senescence-associated dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. Mol. Plant Pathol. 17, 3–15 (2016).Vierstra, R. D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32, 275–302 (1996).Bögre, L., Okrész, L., Henriques, R. & Anthony, R. G. Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424–431 (2003).An, L. et al. A zinc finger protein gene ZFP5 integrates phytohormone signalling to control root hair development in Arabidopsis . Plant J. 72, 474–490 (2012).Zhou, Z., An, L., Sun, L. & Gan, Y. ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation. Plant Signal. Behav. 7, 28–30 (2012).Zhou, Z. et al. Zinc finger protein 5 is required for the control of trichome initiation by acting upstream of zinc finger protein 8 in Arabidopsis . Plant Physiol. 157, 673–682 (2011).Lee, D. J. et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277, 115–137 (2007).Theologis, A. et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana . Nature 408, 816–820 (2000).Heyndrickx, K. S. & Vandepoele, K. Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol. 159, 884–901 (2012).Martinoia, E. et al. Multifunctionality of plant ABC transporter - more than just detoxifiers. Planta 214, 345–355 (2002).Kaneda, M. et al. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J. Exp. Bot. 62, 2063–2077 (2011).Alejandro, S. et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 22, 1207–1212 (2012).Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000).Ohashi-Ito, K. & Bergmann, D. C. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY . Development 134, 2959–2968 (2007).Averyanov, A. Oxidative burst and plant disease resistance. Front. Biosci. 1, 142–152 (2009).Flury, P., Klauser, D., Schulze, B., Boller, T. & Bartels, S. The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiol. 161, 2023–2035 (2013).Tanaka, K., Nguyen, C. T., Liang, Y., Cao, Y. & Stacey, G. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal. Behav. 8, e22598 (2013).Nakamura, K. & Matsuoka, K. Protein targeting to the vacuole in plant cells. Plant Physiol. 101, 1–5 (1993).Elena, S. F., Agudelo-Romero, P. & Lalić, J. The evolution of viruses in multi-host fitness landscapes. Open Virol. J. 3, 1–6 (2009).Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).Benjamini,Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001).Sneath, P. & Sokal, R. Numerical Taxonomy. ( W.H. Freeman, 1973).D'Haeseler, P. How does gene expression clustering work? Nat. Biotech. 23, 1499–1501 (2005).Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006)
    corecore