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This study evaluates the extent to which genetic differences among host individuals from 1	  

the same species conditions the evolution of a plant RNA virus.  We performed a three-2	  

fold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-3	  

At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five 4	  

genetically heterogeneous ecotypes of A. thaliana.  After 15 passages we found that evolved 5	  

viruses improved their fitness, showed higher infectivity and stronger virulence in their 6	  

local host ecotypes.  The genome of evolved lineages was sequenced and putative adaptive 7	  

mutations identified.  Host-driven convergent mutations have been identified.  Evidences 8	  

supported selection for increased translational efficiency. Next, we sought for the 9	  

specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus 10	  

populations.  We found that some ecotypes were more permissive to infection than others, 11	  

and that some evolved virus isolates were more specialist/generalist than others.  The 12	  

bipartite network linking ecotypes with evolved viruses was significantly nested but not 13	  

modular, suggesting that hard to infect ecotypes were infected by generalist viruses 14	  

whereas easy to infect ecotypes were infected by all viruses, as predicted by a gene-for-15	  

gene model of infection. 16	  

  17	  
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Species genetic diversity influences the dynamics of ecosystems (Loreau et al. 2011).  Large 1	  

within-species diversity means more productive ecosystems, more resilience against 2	  

perturbations and faster recovery after disturbances (Reusch et al. 2005).  Parasites are one of 3	  

the most common perturbing factors of ecosytems (Poulin 1998), and are thus a factor to 4	  

consider when studying the effects of host genetic diversity.  Epidemics can lead to population 5	  

extinctions (Pounds et al. 2006; Rauch and Weisser 2006), but even without becoming 6	  

epidemic, parasites may reduce host density, growth and productivity and thus affect the 7	  

functioning of ecosystems (Pounds et al. 2006).  Furthermore, host genetic diversity for genes 8	  

involved in resistance against infection influence the evolution of parasites as well (Kessing et 9	  

al. 2006; Altermatt et al. 2008). 10	  

Host populations with low genetic diversity in resistance-related loci show higher infection 11	  

prevalence than populations with great diversity.  Evidences first come from agriculture, where 12	  

genetically homogeneous crops were shown to be more susceptible to diseases than crops 13	  

grown in heterogeneous mixtures (Mundt 2002).  Additional support has been accumulating 14	  

along years for bacteria (Dennehy et al. 2007), arthropods (Calleri et al. 2006; Altermatt and 15	  

Ebert 2008; Reber et al. 2008; Ganz and Ebert 2010), mollusks (Grosholz 1994; Webster and 16	  

Woolhouse 1998), fishes (Ferguson and Drahushchak 1990; Arkusch et al. 2002), birds (Reid et 17	  

al. 2003; Whiteman et al. 2005), and mammals (Burgner et al. 2006; Tibayrenc 2007; Luikart et 18	  

al. 2008; Capparelli et al. 2009).  At one extreme, populations formed only by susceptible 19	  

individuals have a high chance of being extinct.  At the other extreme, populations composed of 20	  

only resistant individuals will have the lowest infection rate.  However, natural populations are 21	  

composed by individuals with different degrees of susceptibility.  The question of how host 22	  

genetic diversity influences the evolution of microparasites is the topic of this study. 23	  

Since microparasites evolve faster than their multicellular hosts, chances of generating 24	  

escape mutants while replicating in a permissive host genotype are high, thus jeopardizing the 25	  

viability of populations formed by individuals resistant only to the non-mutated parasite 26	  

(Martínez et al. 2012).  Indeed, this process may lead to local adaptation of parasites, where 27	  

they have higher fitness in its current host but lower in alternative ones (Kaltz and Shykoff 28	  
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1998; Bedhomme et al. 2012).  Local adaptation to a particular host genotype reduces the 1	  

likelihood of successful transmission to a different one, thus slowing down the rate of epidemic 2	  

spread.  While heterogeneity in susceptibility slows down the spread of infection, too much 3	  

diversity will allow infection by a wider range of parasites (Van Baalen and Beekman 2006).  4	  

Therefore, the long-term outcome of the interplay between host and virus populations depends 5	  

on the degree of genetic diversity in both contenders. 6	  

The interaction between host genotypes and parasite genotypes have been modeled in the 7	  

context of two different approaches.  At the one extreme, the gene-for-gene (GFG) model, 8	  

where a parasite genotype can infect all host genotypes and a universally susceptible host 9	  

genotype exists (Flor 1956).  Resistance occurs when a host “resistance” gene is matched by at 10	  

least one parasite “avirulence” gene.  Polymorphism in infectivity and resistance can be 11	  

maintained only if virulence pays a cost.  At the opposite side, the matching alleles (MA) model 12	  

is based on self vs. non-self recognition systems in invertebrates.  Infection is not possible 13	  

unless the parasite possesses all alleles that match those of the host (Frank 1993).  In this case 14	  

polymorphism in infectivity and resistance are maintained by negative frequency-dependent 15	  

selection.  The classic approach to study these models has been to test a number of host and 16	  

parasite genotypes in a cross-infection experiment and use ANOVA techniques to evaluate if a 17	  

significant host by parasite interaction exists.  In recent years networks theory have been applied 18	  

to bacteria-by-phage infection matrices (Flores et al. 2011, 2013; Weitz et al. 2013).  This 19	  

approach has revealed (i) that infection networks show a characteristic nested structure caused 20	  

by the existence of generalist phages that infect most bacteria and very permissive bacteria 21	  

available to most phages.  (ii) Networks are anti-modular, as groups of phages tend to infect 22	  

non-overlapping groups of hosts.  GFG predicts infectivity matrices to be nested, since the host 23	  

range of specialist virus is a subset of the host range of generalist viruses.  By contrast, MA 24	  

predicts infection matrices to be modular, since infection is likely for viruses and host from the 25	  

same module but rare for those belonging to other modules. 26	  

Our model pathosystem is composed by Tobacco etch virus (TEV; genus Potyvirus, family 27	  

Potyviridae) and Arabidopsis thaliana (Agudelo-Romero et al. 2008a, 2008b; Lalić et al. 2010; 28	  
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Hillung et al. 2012).  A. thaliana ecotypes vary in susceptibility to TEV (Mahajan et al. 1998): 1	  

some allow long-distance movement from inoculated to non-inoculated leaves while other 2	  

support replication in inoculated leaves but do not allow for systemic movement (Mahajan et al. 3	  

1998).  Susceptibility depends on the Restricted TEV Movement (RTM) multigenic system 4	  

composed of the RTM1, RTM2 and RTM3 loci (Mahajan et al. 1998; Whitham et al. 1999, 2000; 5	  

Chisholm et al. 2000, 2001; Cosson et al. 2010a, 2010b).  The presence of dominant alleles in 6	  

all three loci is necessary for resistance, homozygous recessive mutations at any of the three loci 7	  

results in systemic infection (Chisholm et al. 2000, 2001). 8	  

Agudelo-Romero et al. (2008b) performed an evolution experiment in which TEV was 9	  

adapted to ecotype Ler-0 (Table 1).  The ancestral TEV systemically infected Ler-0 plants, 10	  

although the infection was asymptomatically.  After 17 passages, the resulting strain, TEV-11	  

At17, fixed six point mutations, improved its accumulation ca. 44-fold and induced severe 12	  

symptoms.  Comparative transcriptomics showed differences between evolved and ancestral 13	  

viruses: TEV-At17 down-regulated developmental and metabolic processes, innate immunity, 14	  

and responses to abiotic stresses and to infection.  Lalić et al. (2010) showed that TEV-At17 15	  

systemically infected ecotypes that were resistant to the ancestral TEV (Table 1).  Furthermore, 16	  

infectivity, accumulation, and severity of symptoms varied among ecotypes.  Hillung et al. 17	  

(2012) compared the effect of TEV-At17 infection on the transcriptome of the five ecotypes 18	  

listed in Table 1, finding that they differ in the way perceived and responded to infection.  Ler-19	  

0, St-0 and Di-2 developed strong symptoms and accumulated large amounts of virus.  Ei-2 and 20	  

Wt-1 developed mild symptoms and accumulated fewer viruses.  This classification into two 21	  

groups also explained the differences in transcriptomic responses among ecotypes: Ei-2 and Wt-22	  

1 up-regulated genes involved in abiotic stresses and in the construction of new tissues; the 23	  

other ecotypes up-regulated defense genes. 24	  

In this study we sought to explore whether further evolution of TEV-At17 on each ecotype 25	  

would result in specialization or, by contrast, the new evolved viruses would retain the ability to 26	  

infect all ecotypes as the starting virus.  After a period of experimental evolution, we evaluated 27	  

the infectivity, virulence and relative fitness of each evolved strain across all five A. thaliana 28	  
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ecotypes and assessed whether significant host genotype by virus strain interactions has 1	  

emerged.  We applied network analyses to evaluate the nestedness and modularity of the 2	  

infection matrix.  The molecular basis of the adaptive process are also explored. 3	  

 4	  

Methods 5	  

VIRUS AND PLANT ECOTYPES 6	  

A. thaliana Ler-0 frozen infected material from passage 16 of the evolution experiment 7	  

described in Agudelo-Romero et al. (2008b) was used to prepare a sap.  Fifty 21-days-old Ler-0 8	  

were rub-inoculated with 4 µL of sap containing 10% Carborundum.  Plants were maintained in 9	  

a BSL-2 greenhouse at 16:8 h light:dark and 24:20 ºC day:night until sample collection 21 days 10	  

post-inoculation (dpi).  Symptomatic plants were collected, systemic tissues ground into fine 11	  

powder and stored at −80 ºC. 12	  

The consensus sequence for the whole genome of the viral population was obtained as 13	  

described in Agudelo-Romero et al. (2008b).  The resulting genomic sequence was identical to 14	  

the one previously reported for TEV-At17 (Agudelo-Romero et al. 2008b) with an additional 15	  

nonsynonymous mutation G6816A (M2224I) in the NIaPro cistron.  We named this isolate 16	  

TEV-At17b (Hillung et al. 2012). 17	  

The five A. thaliana ecotypes listed in Table 1 were chosen for this study.  According to 18	  

their genetic makeup, Ei-2, Ler-0 and St-0 shall be sensitive to infection with the ancestral TEV 19	  

whereas Di-2 and Wt-1 should not; all are sensitive to TEV-At17b (Hillung et al. 2012). 20	  

 21	  

EXPERIMENTAL EVOLUTION 22	  

Experimental evolution consisted of three-fold replicated serial passages of TEV-At17b in five 23	  

ecotypes of A. thaliana (Table 1).  Evolution was initiated as described in Hillung et al. (2012).  24	  

Passages were carried out every 21 dpi.  Infection was confirmed by RT-PCR on upper leafs 25	  

(Lalić et al. 2010).  Randomly chosen infected plants from each ecotype were collected, 26	  

systemically infected tissues were ground into fine powder in liquid N2 and used to inoculate the 27	  
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next generation of plants.  Experimental evolution was continued for 15 passages.  At the end of 1	  

experimental evolution five plants from each lineage per ecotype were randomly chosen, 2	  

homogenized and stored at −80 ºC. 3	  

 4	  

VIRUS GENOMIC RNA PURIFICATION, QUANTIFICATION AND SEQUENCING 5	  

RNA extraction from 100 mg tissue per plant was performed using InviTrap® Spin Plant RNA 6	  

Mini Kit (Invitek) following manufacturer’s instructions.  The concentration of total plant RNA 7	  

extracts was adjusted to 50 ng/µL for each sample and the quantification of viral load was done 8	  

with real time RT-qPCR as described in Lalić et al. (2010).  Amplifications were done using an 9	  

ABI StepOnePlusTM Real-Time PCR System (Applied Biosystems) as follows: 5 min at 42 ºC, 10	  

10 s at 95 ºC following 40 cycles of 5 s at 95 ºC and 34 s at 60 ºC.  Quantifications were 11	  

performed in triplicate for each sample. 12	  

Full genome consensus sequences of evolved viral isolates were obtained as previously 13	  

described (Agudelo-Romero et al. 2008b).  Chromatogram visualization and contigs assembling 14	  

were done with Lasergene (DNAStar Inc. Madison WI).  Molecular evolutionary genetics 15	  

analyses were done with MEGA 6.05 (Tamura et al. 2013). 16	  

 17	  

MEASURING INFECTIVITY, VIRULENCE AND FITNESS 18	  

To compare the infectivity, virulence and fitness of evolved lineages across host ecotypes, all 19	  

five ecotypes were inoculated with all 15 evolved viral isolates.  To this end infectious sap 20	  

resulting from the experimental evolution was quantified and diluted to the same concentration.  21	  

One leaf from 21 days old A. thaliana plant was inoculated.  Control plants were inoculated 22	  

only with buffer and maintained in the same conditions.  Infection was verified by RT-PCR 21 23	  

dpi and infectivity, I, was determined as the proportion of infected plants among inoculated 24	  

plants. 25	  

The aerial part of infected and control healthy plants were weighted with a precision of 10 26	  

mg 21 dpi.  Virulence, V, was defined as the reduction in weight due to infection and calculated 27	  
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as 𝑉   =   1  –   𝑃/𝑃, where P is the weight of an infected plant and 𝑃 is the average weight of non-1	  

inoculated plants from the same ecotype. 2	  

Between five and nine infected plants from each ecotype-viral lineage combination were 3	  

collected.  Total RNA of infected plants was extracted and the fraction of viral RNA in total 4	  

RNA was quantified by RT-qPCR.  A Malthusian growth rate per day was computed as m = 5	  

!
!
log 𝐶! 𝐶! , where Ct is the number of TEV genomes/100 ng of total RNA quantified t dpi.  6	  

Relative fitness was calculated as Wx = exp(mx − mTEV-At17b), where mx and mTEV-At17b are the 7	  

Malthusian growth rates of the viral isolate x and of the ancestral TEV-At17b isolate, 8	  

respectively, evaluated in the same host. 9	  

 10	  

STATISTICAL ANALYSES 11	  

W data were analyzed using GLM (Normal distribution and an identity link function).  The 12	  

model has four random factors, the local host (LH), the virus evolutionary lineage (L), the test 13	  

host (TH), and the experimental biological replicate (R; i.e., an individual plant of the test host 14	  

inoculated with virus from a lineage evolved in a certain local host).  LH and TH were 15	  

orthogonal factors, L was nested within LH (represented as L(LH)) and R was nested within the 16	  

TH×L(LH) interaction.  The model equation was: 17	  

Wijklm = µ + LHi + L(LH)ij + THk + (LH×TH)ik + (TH×L(LH))ijk + R(TH×L(LH))ijkl + εijklm, (1) 18	  

where µ is the grand mean value and εijklm is the error associated with individual measure m. 19	  

I data were analyzed using GLM and the following binary logistic regression equation 20	  

(Binomial responses and logit link function): 21	  

log[Iijkl/(1 − Iijkl)] = µ + LHi + L(LH)ij + THk + (LH×TH)ik + (TH×L(LH))ijk + εijkl,  (2) 22	  

where εijkl is the error associated with individual measure l. 23	  

V data were analyzed using GLM (Normal distribution and an identity link function) and 24	  

the equation: 25	  

Vijkl = µ + LHi + L(LH)ij + THk + (LH×TH)ik + (TH×L(LH))ijk + εijkl.   (3) 26	  



	   9	  

The magnitude of the different effects included in the models was evaluated using the 1	  

partial eta-squared (𝜂!!) statistic that represents the proportion of the total variability attributable 2	  

to a given factor.  Conventionally, values 𝜂!!  < 0.05 are considered as small, 0.05 ≤	 𝜂!!  < 0.15 3	  

as medium and 𝜂!!  ≥ 0.15 as large effects. 4	  

The relative extent of genetic divergence versus phenotypic parallelism during 5	  

experimental evolution is given by the ratio 𝐼! = 𝜎! 𝑊 ∆𝑊  (Vasi et al. 1994), where 6	  

𝜎! 𝑊  is the between-lineages genetic standard deviation for fitness, and ∆𝑊  the absolute 7	  

value of the average change in fitness from the common ancestor.  IW provides a measure of the 8	  

average genetic difference among lineages relative to the average evolutionary change from the 9	  

ancestral state.  Under the null hypothesis of all phenotypic change being associated to a genetic 10	  

change, IW = 1. 11	  

All statistical analyses were done with IBM SPSS Statistics version 21. 12	  

 13	  

NETWORK STATISTICS 14	  

An infection network is considered bipartite when it contains two agents that interact, in this 15	  

case virus isolates and plant ecotypes.  This network can be represented as a Boolean matrix of 16	  

size m×n with entries assigned to 1 when there is a reported infection of the pair (virus isolate, 17	  

plant ecotype) or 0, otherwise.  Here m is the number of viral isolates and n is the number of 18	  

distinct ecotypes.  The W matrix was first transformed into a Boolean matrix indicating whether 19	  

a given viral isolate performs significantly better (1) or worse (0) than the ancestral TEV-At17b 20	  

into a given host genotype. 21	  

The nestedness of the infection matrix was calculated using the nestedness temperature 22	  

calculator algorithm implemented in BINMATNEST (Rodríguez-Gironés and Santamaría 23	  

2006).  The temperature T of an interaction matrix is estimated by resorting the row order of 24	  

ecotypes and the column order of viruses such that as many of the interactions occur in the 25	  

upper left portion of the matrix.  T quantifies the extent to which a matrix is perfectly nested (T 26	  

= 0) or if the matrix lacks of any order and elements distribute at random (T = 100). 27	  
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Bipartite networks can be decomposed into disjoint components such that no cross-1	  

infections are found between components.  The modularity of bipartite infection networks was 2	  

computed using the standard Bipartite Recursively Induced Modules algorithm (Barber 2007), 3	  

which uses a local search heuristic to maximize bipartite modularity Q.  Q represents how often 4	  

a particular ordering of virus and ecotypes into modules corresponds to interactions that are 5	  

primarily inside a module (Q = 1 or modular), outside of modules (Q = −1 or antimodular) or 6	  

somewhere in between (−1 < Q < 1). 7	  

The statistical significance of T and Q was assessed using the general null model proposed 8	  

by Bascompte et al. (2003).  In this model, the probability of each cell being occupied is the 9	  

average of the probabilities of occupancy of its row and column.  Biologically, this means that 10	  

the probability of drawing an interaction is proportional to the level of generalization (degree) 11	  

of both the virus isolate and the plant genotype. 12	  

 13	  

Results 14	  

EXTENT OF ADAPTATION TO EACH LOCAL HOST 15	  

First, we sought to determine whether each evolved viral lineage has increased fitness in its 16	  

corresponding local host ecotype relative to TEV-At17b.  W values are shown in Table S1 (gray 17	  

squares).  None of the lineages evolved in Ei-2 or Ler-0 showed significant increases in W (one-18	  

sample t-tests, 1-tail P ≥ 0.058).  Only Di-2/3 showed 0.85% significant increase (one-sample t-19	  

test, 1-tail P = 0.002).  All lineages evolved in St-0 (2.74%, 5.65% and 13.62%, respectively; 20	  

one-sample t-tests, 1-tail P ≤ 0.031) and in Wt-1 (1.13%, 1.13% and 2.24%, respectively; one-21	  

sample t-tests, 1-tail P ≤ 0.005) showed large and significant increases. 22	  

Next, we sought to explore whether the observed changes in W reflect genetic divergence 23	  

among independent lineages or instances of parallel phenotypic evolution with no genetic basis.  24	  

Lineages evolved in Di-2, Ei-2 and Ler-0 show quite diverse results (Table S1), while lineages 25	  

evolved in St-0 and Wt-1 show similar increasing trends in their relative fitness.  Table 2 shows 26	  

the maximum likelihood estimates of 𝜎! 𝑊 , ∆𝑊  and IW for each local host.  IW > 1 among 27	  
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lineages evolved in Di-2, Ei-2 and Ler-0, indicating parallel phenotypic evolution: differences 1	  

among independent lineages are small relative to the average change in fitness from the 2	  

ancestral TEV-At17b.  However, we could not reject the null hypothesis of an equal 3	  

contribution of parallelism and divergence (z ≤ 1.277, P ≥ 0.101) owed to the large uncertainty 4	  

associated to estimates of IW (Table 2).  By contrast, IW < 1 for St-0 and Wt-1, (z ≥ 2.196, P ≤ 5	  

0.014), indicating that the contribution of genetic differences among lineages was more 6	  

important than average changes in relative fitness. 7	  

I had a weaker response to evolution on different hosts than W as fewer lineages showed a 8	  

significant variation, being the trend also variable in sign: lineage St-0/1 reduced its I in 83.34% 9	  

(GLM; χ2 = 9.515, 1 d.f., P = 0.002).  By contrast, lineages Di-2/1 (118.55%), Di-2/3 10	  

(122.61%), Wt-1/2 (55.55%), and Wt-1/3 (113.88%) (GLMs; χ2 ≥ 3.552, 1 d.f., P ≤ 0.030) 11	  

showed significant increases in I. 12	  

Therefore, we conclude from these analyses that the evolutionary response of TEV-At17b 13	  

depends on the host genotype.  Lineages passaged in St-0 and Wt-1 increased fitness in their 14	  

local hosts by genetic changes that affect fitness, response to Di-2 was weaker and response to 15	  

Ei-2 and Ler-0 was null and showing strong phenotypic parallelism. 16	  

 17	  

THE SPECIFICITY OF ADAPTATION 18	  

We now turn our attention to explore whether TEV-At17b adaptation to ecotypes that differ in 19	  

susceptibility to infection would come with a fitness cost in the ancestral host Ler-0.  To test 20	  

this, we run paired t-test comparing W of lineages in their local host with their W in Ler-0 21	  

(Table S1).  Lineages evolved in Di-2, Ei-2 and Wt-1 paid no cost in Ler-0 (t3 ≤ 2.058, 1-tail P 22	  

≥ 0.075).  By contrast, lineages evolved in St-0 show 8.93% significant fitness cost in Ler-0 (t3 23	  

= 3.129, 1-tail P = 0.028). 24	  

To test whether adaptation to a novel local host genotype is associated with performance 25	  

on foreign novel host ecotypes, we compared the W values of each evolved lineage on their 26	  

corresponding local hosts with the values estimated on each of the three new foreign hosts.  27	  

Results widely varied among local hosts (Table S1 and Fig. 1A).  On average, Di-2-evolved 28	  
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isolates perform better than the ancestor in St-0 and Wt-1 (t3 ≥ 3.656, 1-tail P ≤ 0.034) but not 1	  

in Ei-2.  Ei-2-evolved isolates performed better than the ancestor in St-0 (t3 = 3.346, 1-tail P = 2	  

0.039) but equally elsewhere.  St-0- and Wt-1-evolved isolates were fitter than the ancestor in 3	  

Ei-2 (t3 ≥ 2.992, 1-tail P ≤ 0.048) but equally fit in all other three hosts.  Table 3 shows the 4	  

results of the GLM analysis described by equation (1).  LH and TH have both highly significant 5	  

and large effects (𝜂!!  > 0.15 in all cases) on W.  More interestingly, the interaction between local 6	  

and test hosts (LH×TH) also had a large and highly significant effect, thus suggesting that the 7	  

selective constraints imposed by a given local host affect subsequent performance on unselected 8	  

hosts.  Consistently, lineages are also heterogeneous in their response to their local host (L(LH)) 9	  

as well as in their performance across hosts (TH×L(LH)). 10	  

Sensu stricto, all lineages have evolved generalists, since adaptation to a local host 11	  

genotype is always associated to a fitness increase in at least one of the alternative foreign hosts.  12	  

However, not all host ecotypes have selected for viruses that are equally generalist.  A 13	  

significant negative correlation exists between fitness in local and foreign hosts (Spearman’s rS 14	  

= −0.900, 3 d.f., 1-tail P = 0.019).  The most permissive hosts (St-0) has selected for the most 15	  

specialist virus while the less permissive hosts (e.g., Ei-2) have selected for the more generalist 16	  

viruses. 17	  

 18	  

EVOLUTION OF INFECTIVITY AND VIRULENCE 19	  

I data told a similar history than W.  Data were fitted to the logistic regression model given by 20	  

equation (2).  A highly significant effect has been detected for LH (although of medium size; 𝜂!!  21	  

< 0.15), TH as well as for their interaction (in these two cases, of large effect) (Table 3), 22	  

suggesting that the selective constraints imposed by local host affect subsequent infectivity on 23	  

foreign hosts.  Overall, St-0-evolved lineages show the highest I values in their local host, while 24	  

Ei-2-evolved lineages show the lowest I in Ei-2 (Fig. 1B).  Likewise, evolved lineages have 25	  

higher levels of I in Ei-2 and lower in Ler-0. 26	  

V data were fitted to model equation (3).  A highly significant effect has been detected for 27	  

LH, TH as well as for their interaction (the size of LH and TH effects was medium but large for 28	  
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the interaction) (Table 3), suggesting that the virulence of the evolved isolates depends, in a 1	  

non-additive manner, both on the local host ecotype wherein a lineage has evolved as well as on 2	  

the host ecotype in which V has been measured.  Lineages evolved in Di-2 and St-0 are less 3	  

virulent, while lineages evolved in Ei-2 are the most virulent (Fig. 1C).  St-0, Ler-0, Wt-1, and 4	  

Di-2 plants show more aggressive symptoms regardless the viral isolate inoculated, whereas Ei-5	  

2 tends to be more tolerant to infection with all evolved strains (Fig. 1C).  Fig. 1C also 6	  

illustrates that the more virulent isolates in their local host are less virulent they are in their 7	  

alternative hosts. 8	  

 9	  

ANALYSIS OF INFECTION NETWORKS 10	  

The modularity of the bipartite network shown in Fig. 2B was low (0.192) and not significantly 11	  

different from the null expectation (E(Q) = 0.222±0.049, P = 0.202).  The infection matrix 12	  

shown in Fig. 2A has a temperature of T = 13.300, a value that is significantly lower than 13	  

expected by the null model (E(T) = 29.343±8.487, P = 0.019), meaning the infection matrix is 14	  

significantly nested. 15	  

The first row in the matrix corresponds to lineage Ler-0/2 (Fig. 2A).  This is the only 16	  

lineage whose fitness across all host ecotypes is not different from that of the ancestral virus, 17	  

not surprising since it has no mutations that make it different from TEV-At17b (see below).  All 18	  

other isolates are worse than the ancestral isolate at least in one host ecotype.  At the one 19	  

extreme, Di-2/3 and Ei-2/2 are worse than the ancestral only in Ei-2; at the other extreme, St-20	  

0/1, St-0/3 and Wt-1/2 are worse than the ancestral in all ecotypes but one.  The first column in 21	  

the infection matrix (Fig. 2A) corresponds to ecotype St-0; it was the most susceptible one, as it 22	  

was infected by 13 evolved viral isolates better than by the ancestral virus.  At the other side, 23	  

the most reliant ecotype was Ei-2, which was only successfully infected by two of the evolved 24	  

viral isolates. 25	  

Therefore, we conclude that during our evolution experiment, the matrix of virus-host 26	  

interaction evolved no modularity but significant nestedness, as predicted by GFG. 27	  

 28	  



	   14	  

GENOMIC EVOLUTION 1	  

All lineages except Ler-0/2 contain at least one mutation.  A total of 79 independent mutations 2	  

occurring at 62 different nucleotide sites were identified with a range of two to eight mutations 3	  

per lineage (Fig. 3 and Table S2).  Forty-three mutations were synonymous and 36 4	  

nonsynonymous.  Twenty-four mutations were not unique and of the 62 polymorphic sites 5	  

identified, eight were mutated in multiple independent lineages.  Three of these not unique 6	  

mutations were exclusive of Ei-2 lineages (C2116U, G3639A and G6420A).  Mutation C795U 7	  

was shared by St-0 lineages.  Mutation G1272U was shared by Di-2 and St-0 lineages.  8	  

Mutation A9240G was common to lineages Ler-0/1, St-0/1 and Wt-1/2.  These six convergent 9	  

mutations were synonymous.  Nonsynonymous mutation C2912A (A923D in P3 cistron and 10	  

L923I in the overlapping P3N-PIPO cistron) was shared by lineages Di-2/1 and St-0/1.  11	  

Nonsynonymous mutation C8636U (S2831L in CP) was shared by all Di-2- and Ler-0-evolved 12	  

lineages and by Wt-1/3.  In addition, lineages Ei-2/2 (C8624U) and Ei-2/3 (U8623C) each has a 13	  

nucleotide substitutions affecting the same codon at CP cistron but resulting in different amino 14	  

acid replacements (S2827L and S2827P).  These convergent mutations are reflected in the 15	  

clustering pattern shown in a ML tree, where more diverse clusters alternate with clusters 16	  

defined by a common host (Fig. S1).  Synonymous and nonsynonymous mutations distributed 17	  

evenly among shared and unique mutations (Fisher’s exact test: P = 0.260). 18	  

Treating each lineage as an observation and each host ecotype as a subpopulation, the 19	  

average nucleotide diversity within host is 𝜋! = 0.167±0.008 (±1 SD; 1000 bootstrap samples).  20	  

On the other hand, the nucleotide diversity for the entire sample is 𝜋!  = 0.187±0.014.  21	  

Therefore, the estimate of inter-host nucleotide diversity is 𝛿!" = 0.019±0.010, and thus the 22	  

estimate of the proportion of inter-host nucleotide diversity, known as coefficient of nucleotide 23	  

differentiation (Nei 1982), is 𝑁!" = 𝛿!! 𝜋! = 0.103±0.043, a value significantly greater than 24	  

zero (z = 2.395, 1-tail P = 0.004).  Thus, we conclude that minor yet significant genetic 25	  

differentiation has been generated among viruses replicating in different host genotypes.  To 26	  

assess whether selection played a role in genetic differentiation among host genotypes, we 27	  



	   15	  

performed a D test (Tajima 1989) and found that it was significantly negative (D = −2.172, P = 1	  

0.015).  The significance of this finding will be discussed later. 2	  

 3	  

ASSOCIATION BETWEEN MOLECULAR DIVERSITY AND GENETIC VARIANCE 4	  

FOR FITNESS 5	  

A test for adaptive evolution could be done by looking at the correlation between genomic 6	  

diversity of evolved viruses within each local host genotype and 𝜎! 𝑊 .  If genomic diversity is 7	  

neutral then we expect no correlation between these two traits.  By contrast, if genetic 8	  

differences among lineages translate in differences in W, then we expect a significant positive 9	  

correlation.  To perform this test, we first computed the mean genetic diversity among lineages 10	  

within each local host (Fig. 4A).  We found the lowest genetic diversity for the Ei-2 lineages 11	  

and the largest one for the St-0 lineages.  Fig. 4B shows the association between genetic 12	  

diversity and 𝜎! 𝑊 .  The expected positive correlation was not observed for the entire dataset 13	  

(Spearman rS = 0.400, 3 d.f., 1-tail P = 0.253).  However, if the data point corresponding to Wt-14	  

1 is removed from the analysis, the correlation becomes significant (rS = 1.000, 2 d.f., 1-tail P < 15	  

0.001).  This result suggests that, with the exception of lineages evolved in Wt-1, genomic 16	  

differences among lineages evolved in a given local host explain the amount of genetic 17	  

differences for relative fitness among lineages.  Therefore, we conclude that some of the 18	  

mutations observed are beneficial and explain differences in fitness among lineages in their 19	  

local host genotype. 20	  

 21	  

SELECTION FOR TRANSLATIONAL EFFICIENCY AT SYNONYMOUS SITES 22	  

A possible explanation for convergence at synonymous sites is that selection for translational 23	  

efficiency would result in the replacement of poorly used codons by synonymous ones for 24	  

which the host cell has a large pool of tRNAs.  Table S2 includes the ancestral and mutated 25	  

codons as well as the frequency of usage (f) for A. thaliana.  For each of the 62 mutations, we 26	  

computed the relative change in usage between the evolved and the ancestral codons C = 27	  



	   16	  

fevolved/fancestral − 1.  Values of C > 0 means that the mutation transforms a codon into a more used 1	  

one whilst C < 0 values imply that mutations go to a more rare codon. 2	  

If the hypothesis of selection operating at the translation level is true, then we expect the 𝐶 3	  

for convergent synonymous mutations to be positive and significantly larger than the value 4	  

observed for all other types of mutations.  For convergent synonymous mutations 𝐶  = 5	  

0.494±0.351 (±1 SEM), whereas for the rest of mutations was 𝐶 = −0.009±0.066, being the 6	  

difference between groups significant (two-samples t-test: t60 = 2.185, 1-tail P = 0.016).  7	  

Therefore, we conclude that convergent synonymous mutations fixed during evolution resulted 8	  

in codons that were ∼50% more used by the A. thaliana translational machinery than the 9	  

original ancestral codon. 10	  

 11	  

Discussion 12	  

HETEROGENEITY IN HOST SUSCEPTIBILITY AND THE EVOLUTION OF 13	  

SPECIALIST AND GENERALIST VIRUSES 14	  

The evolution of host range in RNA viruses has received considerable attention due to its 15	  

implication in emerging infectious diseases.  Plant viruses have highly variable host ranges: 16	  

some are specialists infecting only one or few related species while others are generalists that 17	  

infect a wide range of hosts from different taxonomic groups.  Most previous studies on the 18	  

evolution of plant virus host range explored the effect on fitness traits of passaging viruses into 19	  

a single host species (Yarwood 1970; Rico et al. 2006; Agudelo-Romero et al. 2008b, 2008c; 20	  

Wallis et al. 2007; Bedhomme et al. 2012) or alternating between two host species (Bedhomme 21	  

et al. 2012).  Antagonistic pleiotropy, i.e., evolved viral isolates perform worse in the original 22	  

host than their ancestors, is common.  Antagonistic pleiotropy limits the range of adaptation and 23	  

promotes the evolution of ecological specialization (Remold 2012).  Another observation, 24	  

extensible to animal viruses evolving in cell cultures, is that frequent alternation between host 25	  

species results in generalist viruses with increased fitness in all the alternative hosts with no 26	  

apparent fitness cost (Remold et al. 2008; Bedhomme et al. 2012). 27	  



	   17	  

Despite this obvious interest in among-species transmission, scant attention has received 1	  

the effect of genetic differences within species in the evolution of plant RNA viruses.  This lack 2	  

of studies is surprising given the importance of host genetic diversity in the emergence, spread 3	  

and prevalence of infectious diseases and that the earliest evidence for such effect on prevalence 4	  

come from the field of agronomy (Mundt 2002).  Here, we brought the studies of plant virus 5	  

host range evolution one step further by analyzing the effect of genetic differences among 6	  

ecotypes of A. thaliana in the evolution of an emerging virus.  Genetic differences among 7	  

ecotypes created new challenges for the virus.  St-0 and Wt-1 are the ecotypes for which the 8	  

locally evolved lineages show a larger increase in fitness.  Not surprisingly, the contribution of 9	  

genetic divergence vs. parallelism is stronger in St-0 and Wt-1 than in the other three ecotypes. 10	  

An unexpected observation is that the magnitude of the fitness improvements in the local 11	  

hosts was not dependent on the genetic makeup of the RTM loci.  Since only ecotypes carrying 12	  

rtm alleles were susceptible to infection with the wildtype TEV strain, one would expect more 13	  

room for fitness improvement in Di-2 and Wt-1.  However, this was not the case.  A possible 14	  

explanation is that upon adaptation to Ler-0, TEV-At17b acquired the capacity to systemically 15	  

infect Ler-0, surpassing the RTM-mediated resistance and thus differences in these three loci do 16	  

not represent a constraint anymore. 17	  

Hillung et al. (2012) classified A. thaliana ecotypes into two groups depending on their 18	  

transcriptomic response to TEV-At17b infection.  In any case, incorporating these two groups as 19	  

a factor in the linear models did not result in improvements in explanatory power (e.g., for W 20	  

data, BIC = −7137.105 for the model here presented and BIC = −4101.527 for the model 21	  

incorporating an additional factor), so we concluded that the outcome of the evolution 22	  

experiments was not affected by the differences in symptoms or in transcript profiles of the 23	  

ecotypes.  Therefore, the observed differences in viral fitness among isolates may represent 24	  

adaptation to one or, more likely, many of the small differences among the genetic or 25	  

biochemical components of the ecotypes. 26	  

The analysis of the infection matrix allows to conclude that adaptation to Di-2 and Ei-2 27	  

comes with no fitness cost in the ancestral host ecotype Ler-0, while passages in St-0 and Wt-1 28	  



	   18	  

come with a significant cost, suggesting that the targets of adaptation in Di-2 and Ei-2 are more 1	  

similar to those for Ler-0 while they may be different for St-0 and Wt-1.  When the fitness of 2	  

evolved lineages was tested across all five ecotypes, we found that Di-2-evolved lineages 3	  

showed higher fitness across all hosts than the rest of lineages.  In this sense, Di-2-evolved 4	  

lineages can be considered as the most generalist ones, whereas Ei-2-evolved lineages are the 5	  

most specialized.  It is usually assumed that generalism cannot evolve in the presence of fitness 6	  

tradeoffs across hosts and thus a specialist on a given host will always be able to outcompete a 7	  

generalist sharing that host.  As a consequence, there would be no single genotype that has the 8	  

highest fitness in all environments.  However, Remold (2012) presented a model to explain the 9	  

evolution of specialists and no-cost generalists: epistatic pleiotropy.  Epistatic pleiotropy occurs 10	  

when viral genetic backgrounds differ in how the effect of an allele depends on the host.  Under 11	  

epistatic pleiotropy, viral populations may achieve either specialism or no-cost generalism, 12	  

depending on the host in which they evolve, despite the existence of tradeoffs.  In agreement 13	  

with these expectations, we found that no isolate was superior across all five ecotypes and some 14	  

isolates paid a fitness cost whereas other did not.  Previous data have shown that reciprocal sign 15	  

epistasis is pervasive in TEV genome (Lalić and Elena 2012a) and that epistasis depends on the 16	  

host species where it is evaluated (Lalić and Elena 2012b).  These means specialist lineages 17	  

would not be able to evolve towards no-cost generalists without crossing a fitness valley. 18	  

No evolved viral isolate was superior to all other isolates on every host ecotype.  Likewise, 19	  

we found that no single host ecotype was superior to all others in resistance to every viral 20	  

isolate (Fig. 2A).  Under such conditions it is possible to imagine that host ecotypes and virus 21	  

gene frequencies would be critical for the evolution of natural populations: selection would 22	  

favor those viral genotypes able to infect the more susceptible host ecotypes (St-0), with these 23	  

ecotypes being subsequently disfavored.  Thus, frequency-dependent selection may arise in this 24	  

system. 25	  

We should expect modularity in infection networks if host and pathogens preferentially 26	  

cross-infect within groups (Weitz et al. 2013), while we should expect nestedness if a hierarchy 27	  

of resistance among hosts and infection ability among viruses exists (Weitz et al. 2013).  We 28	  



	   19	  

have shown that the evolved infection network (Fig. 2B) was not modular but significantly 1	  

nested.  The lack of modularity can be interpreted as if ecotypes are not similar in their response 2	  

to the infection of certain viral isolates, so each ecotype responds in a particular manner.  A 3	  

GFG model of interaction between TEV and A. thaliana predicts the emergence of nestedness.  4	  

A GFG mechanism implies that mutations increasing fitness in the new local host exist that do 5	  

not pay a fitness cost in Ler-0, thus the set of hosts that an isolate can infect are subsets of each 6	  

other.  At the other side, a MA mechanism implies that by acquiring the ability to infect a given 7	  

ecotype, viruses may entirely loss the ability to infect Ler-0.  As we discussed above, however, 8	  

a cost exists for the lineages that have experienced the largest increase in fitness in their local 9	  

host (St-0 and Wt-1), but not for the lineages that show minor fitness increases in their local 10	  

hosts (Di-2 and Ei-2).  Therefore, our data do not fully match to any of these two extreme 11	  

models but to some intermediate mechanism by which TEV isolates have evolved the ability to 12	  

infect new hosts and lose their infectivity in the original host ecotype only under certain 13	  

conditions. 14	  

 15	  

TRADEOFFS BETWEEN FITNESS, VIRULENCE AND INFECTIVITY 16	  

Wrapping up the results from the three traits measured, lineages evolved in Di-2 reached the 17	  

highest fitness across all host genotypes, although such fitness increase was not paralleled by 18	  

increases in infectivity or in virulence.  By contrast, Ei-2-evolved lineages had the lowest fitness 19	  

across all hosts, being the less infectious but the more virulent ones.  St-0-evolved lineages were 20	  

the most infectious ones but at the same time the less virulent.  Indeed, a negative significant 21	  

correlation exists between average virulence and infectivity (rS = −0.900, 3 d.f., P = 0.037).  22	  

From the perspective of permissiveness to infection, on average, the highest infectivity has been 23	  

observed for Ei-2.  This genotype also develops the weakest symptoms. 24	  

Provided that virulence does not represent any clear advantage for the parasite, explaining 25	  

why most parasites induce symptoms in their hosts is a relevant question.  A common 26	  

assumption is that virulence is an unavoidable consequence of parasite’s multiplication (Lenski 27	  

and May 1994) and thus a positive association must exist between virulence and accumulation.  28	  



	   20	  

Such association has been previously reported for TEV infecting pepper (Agudelo-Romero et 1	  

al. 2008c) and for Cauliflower mosaic virus (CaMV) infecting turnip (Doumayrou et al. 2012).  2	  

Here, we failed to find this association.  Likewise, in a previous study this association was not 3	  

found for TEV genotypes that differed in single point mutations and evaluated in their natural 4	  

host tobacco (Carrasco et al. 2007).  This apparent contradiction suggests that the positive 5	  

association may be pathosystem-dependent.  Two reasons can explain lack of positive 6	  

correlation.  First, virulence estimates are too noisy for reliable statistical inferences.  In this 7	  

sense, most of the observed phenotypic variance (71.9%) was not explained by genetic 8	  

differences among isolates but attributable to noise.  Second, a correlation does not exist and 9	  

many other factors influencing the progression of viral infection would explain virulence.  In 10	  

particular, virulence would not depend on within-host replication if the extent of damage is not 11	  

proportional to the amount of viral particles, as in the case of a hypersensitive response (Morel 12	  

and Dangl 1997), if expressing the systemic acquired resistance pathway is costly (Heidel et al. 13	  

2004), or if allocating resources to defense detracts from vegetative growth or reproductive 14	  

effort (Heil 2001; Pagán et al. 2008). 15	  

An adaptive explanation for the evolution of virulence is the tradeoff hypothesis that 16	  

proposes that virulence must positively correlate with transmission (Anderson and May 1982).  17	  

Depending on the form of the virulence-transmission function, the tradeoff hypothesis predicts 18	  

that virulence may evolve either to maximal levels or to an intermediate optimum.  The latter 19	  

occurs when the costs of virulence are not outweighed by the benefits of additional increase in 20	  

transmission (Frank 1996).  In the case of plant virus, a positive correlation between 21	  

transmission and virulence was found for CaMV (Doumayrou et al. 2012).  In sharp contrast, 22	  

we found a significant negative correlation between virulence and infectivity.  During our 23	  

artificial transmission experiment, lineages were transmitted mechanically regardless their 24	  

virulence, thus we may have relaxed the tradeoff resulting in independent evolution of virulence 25	  

and infectivity. 26	  

 27	  

ON THE MOLECULAR BASIS OF ADAPTATION 28	  



	   21	  

The characterization of the full genome consensus sequences of the evolved isolates revealed 1	  

some interesting features.  First, evolved TEV isolates contained a variable number of 2	  

nucleotide substitutions, including both synonymous and nonsynonymous.  Second, significant 3	  

genetic differentiation among lineages was generated during our evolution experiment.  We 4	  

evaluated whether this divergence was due to the action of natural selection and found a 5	  

significant and negative Tajima’s D value.  D < 0 values are compatible with three explanations: 6	  

(i) segregation of slightly deleterious mutations, (ii) purifying selection and (iii) a fast 7	  

population expansion.  In an expanding population, new mutations may be segregating and will 8	  

be observed as singletons.  In our case, we have observed 55 singletons that have inflate the 9	  

number of segregating sites and cause D < 0. 10	  

We have other evidences supporting adaptive evolution at the genomic level.  First, we 11	  

observed significant and host ecotype specific changes in relative fitness.  Second, we observed 12	  

a significant positive correlation between genomic diversity and 𝜎! 𝑊 .  This positive 13	  

association between genomic diversity and differences in fitness among lineages is explained by 14	  

the adaptive value of some of the mutations.  Third, supporting this, we observed a number of 15	  

convergent mutations, many of which appear to be dependent on the host ecotype.  And fourth, 16	  

we observed a significant genomic differentiation of viral populations evolving on different host 17	  

genotypes. 18	  

While convergent evolution at nonsynonymous sites is explained as a consequence of 19	  

identical selective pressures and the existence of limited accessible adaptive pathways, 20	  

molecular convergence at synonymous sites is more problematic to explain.  Convergent 21	  

evolution at synonymous sites has been often observed in experimental evolution of RNA 22	  

viruses (Bull et al. 1997; Wichman et al. 1999; Cuevas et al. 2002; Novella et al. 2004; Remold 23	  

et al. 2008; Acevedo et al. 2013; Cabanillas et al. 2013) as well as in evolution of resistance to 24	  

antiviral drugs (Nijhuis et al. 1999; Martínez-Picado et al. 2000), although such observations are 25	  

still scarce for plant viruses (e.g., Lafforgue et al. 2011).  Furthermore, studies analyzing the 26	  

mutational landscapes of RNA viruses have shown significant fitness effects associated to silent 27	  

mutations (Sanjuán et al. 2004; Carrasco et al. 2007; Cuevas et al. 2012; Acevedo et al. 2013) 28	  



	   22	  

thus supporting the notion that, at least for RNA genomes, equating synonymous substitution 1	  

with neutral substitution is not always valid.  Three non-mutually exclusive explanations can be 2	  

brought forward to explain convergent evolution at synonymous sites: (i) the necessity to 3	  

preserve regulatory secondary RNA structures, (ii) preventing the formation of long dsRNA 4	  

structures that may be targets of RNA silencing, and (iii) selection for translational efficiency 5	  

would result in the replacement of poorly used codons by synonymous ones for which the host 6	  

cell has a large pool of tRNAs.  Without discarding hypotheses (i) and (ii), our results suggest 7	  

that selection for translational efficiency may, in part, explain convergent synonymous 8	  

mutations. 9	  

 10	  

Conclusions 11	  

Most evolution experiments with plant viruses seeking for the evolution of generalist and 12	  

specialist viruses employed different host species.  In this study we explored the effect that 13	  

within-species genetic variability for susceptibility has in virus adaptation.  We found that some 14	  

plant ecotypes selected for more generalist viruses whereas other ecotypes selected for more 15	  

specialist viruses.  We found that permissive hosts selected for specialist viruses while 16	  

restrictive hosts selected for generalist viruses.  No evolved virus was superior to all others in 17	  

every ecotype and no ecotype was resistant against all evolved virus.  Such nestedness of the 18	  

infection matrix creates the conditions for frequency-dependent selection to operate in the long-19	  

term. 20	  

Despite the similarity among hosts and the relatively short evolution time, independent 21	  

lineages have accumulated genetic variation and have diverged from each other.  The genomic 22	  

characterization of the evolved lineages has shown cases of host-dependent convergent 23	  

mutations, including some synonymous cases that may contribute to improve translational 24	  

efficiency. 25	  

Finally, the relative fitness of evolved strains is independent from virulence and infectivity.  26	  

By contrast, virulence and infectivity are linked, as more virulent viruses are transmitted worse 27	  



	   23	  

than temperate ones.  This tradeoff and the lack of correlation between virulence and relative 1	  

fitness have important implications for the evolution of virulence in this pathosystem. 2	  
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Table 1.  List of A. thaliana ecotypes used in this study and the corresponding 

resistance phenotype according to the allelic combination at each RTM loci relative to 

the ancestral TEV. 

Ecotype Origin Genotype Phenotype 

Di-2 France RTM1/RTM1 RTM2/RTM2 RTM3/RTM3 resistant 

Ei-2 Germany rtm1/rtm1 RTM2/RTM2 RTM3/RTM3 sensitive 

Ler-0 Germany rtm1/rtm1 RTM2/RTM2 RTM3/RTM3 sensitive 

St-0 Sweden RTM1/RTM1 RTM2/RTM2 rtm3/rtm3 sensitive 

Wt-1 Germany RTM1/RTM1 RTM2/RTM2 RTM3/RTM3 resistant 

	   	  1	  
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Table 2.  Divergence versus parallelism in relative fitness for lineages evolved 

independently in the five different A. thaliana host genotypes. 

Local host ∆𝑾  Var( ∆𝑾 ) 𝝈𝑮 𝑾  Var(𝝈𝑮 𝑾 ) IW (±1 SEM) 

Di-2 2.533×10−3 9.402×10−5 1.198×10−4 2.913×10−5 4.321±56.183 

Ei-2 2.300×10−3 1.502×10−4 4.657×10−5 7.016×10−9 2.967±7.121 

Ler-0 3.067×10−3 1.675×10−3 3.105×10−4 9.338×10−7 5.746±80.002 

St-0 6.957×10−2 3.173×10−3 2.054×10−3 2.951×10−6 0.652±0.076 

Wt-1 1.390×10−2 4.107×10−5 1.106×10−5 4.923×10−10 0.239±0.058 
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Table 3.  GLM analyses of variance for the three traits measured for all evolved lineages across the four new hosts (Di-2, Ei-2, St-0, and Wt-1). 

 Relative fitness Infectivity Virulence 

Source of variation Wald’s χ2 d.f. P 𝜼𝑷
𝟐  Wald’s χ2 d.f. P 𝜼𝑷

𝟐  Wald’s χ2 d.f. P 𝜼𝑷
𝟐  

Intersection µ 36674175.722 1 < 0.001 1.000 0.000 1 1.000 0.954 6743.107 1 < 0.001 1.000 

Local host LH 555.603 4 < 0.001 0.318 17.562 4 0.002 0.079 19.098 4 0.001 0.141 

Lineage L(LH) 2667.073 10 < 0.001 0.179 81.834 10 < 0.001 0.667 89.816 10 < 0.001 0.376 

Test host TH 14629.123 4 < 0.001 0.758 61.624 4 < 0.001 0.550 12.848 4 0.012 0.137 

Local host by Test host LH×TH 4655.737 16 < 0.001 0.278 39.447 16 0.001 0.381 82.540 16 < 0.001 0.357 

Test host by Lineage TH×L(LH) 12124.267 40 < 0.001 0.186 86.925 39 < 0.001 1.000 149.934 40 < 0.001 0.161 

Biological replicate R(TH×L(LH)) 53712.912 295 < 0.001 0.979         
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Figure 1.  (A) Average relative fitness in local and unselected hosts.  (B) Average infectivity in 1	  

local and unselected hosts.  (C) Average virulence in local and unselected hosts.  Each dot 2	  

represents the average value of the three evolved lineages.  Error bars correspond to ±1 SEM.  3	  

Error intervals for the infectivity of Ei-2 across unselected hosts and for St-0 both in local and 4	  

across unselected test hosts expand the entire [0, 1] interval. 5	  

  6	  
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Figure 2.  Matrix representation of the host genotype-evolved TEV isolates interactions.  (A) 1	  

The rows represent the 15 viral isolates, and the columns represent the five host genotypes.  2	  

White cells represent combinations in which the corresponding virus has a relative fitness 3	  

significantly higher than the ancestral TEV-At17b.  (B) Bipartite network representation of the 4	  

infection matrix. 5	  

 6	  

  7	  
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Figure 3.  Schematic representation of the collection of mutations observed in 14 of the 1	  

experimentally evolved lineages (lineage Ler-0/2 has no mutations).  The first line represents 2	  

the full TEV genome with the position of the 11 mature viral proteins within the ORF.  The 14 3	  

other lines correspond each to one lineage.  Synonymous mutations are represented as empty 4	  

circles, and nonsynonymous mutations are represented by filled circles.  Convergent mutations 5	  

are indicated above the lineages. 6	  

 7	  

  8	  
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Figure 4.  (A) Virus mean genetic diversity within each host genotype.  (B) Association 1	  

between genetic diversity and the genetic component of variance for relative fitness (data from 2	  

Table 2).  Axes in panel B are both in logarithmic scale.  All error bars represent ±1 SD. 3	  

4	  
  5	  
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Supporting Information 1	  

The following supporting information is available for this article: 2	  

 3	  

Table S1.  Relative fitness values for each evolved lineage measured on each alternative host 4	  

genotype.  The gray shadow indicates tests of adaptation to the local host.  Values are the 5	  

average of a number of infection assays (between five and nine) and errors correspond to ±1 6	  

SEM.  Asterisks indicate cases in which the value is significantly different from the value 7	  

estimated for the ancestral TEV-At17b isolate (one-sample t-tests, P < 0.05; significance levels 8	  

corrected by the FDR method). 9	  

 10	  

Table S2.  Complete list of mutations in the 15 independently evolved lineages. 11	  

 12	  

Figure S1.  Maximum likelihood phylogenetic tree obtained for the genomic sequences of the 13	  

evolved lineages.  A Kimura 2-parameters model with transitions to transversions rates ratio of 14	  

4.99 was the best fitting scheme of nucleotide substitutions; this model was used for 15	  

constructing this phylogenetic tree as well as for all other molecular analyses reported in the 16	  

main text.  The ancestral sequence TEV-At17b was included for rooting purposes.  Numbers on 17	  

the nodes correspond to bootstrap support values.  Clusters of isolates evolved in a common 18	  

host are highlighted with different colors. 19	  
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