223 research outputs found

    On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds 0v<0 \leq v< \infty in Nature

    Full text link
    We present the theory, the experimental evidence, and fundamental physical consequences concerning the existence of families of undistorted progressive waves (UPWs) of arbitrary speeds 0v<0\leq v < \infty, which are solutions of the homogeneous wave equation, Maxwell equations, and Dirac and Weyl equations.Comment: 77 pages, Latex article, with figures. Includes corrections to the published versio

    The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells

    Get PDF
    It is well established that several cell surface receptors interact with each other to form dimers and oligomers, which are essential for their activation. Since little is known about the quaternary structure of P2Y receptors, in the present work, we investigated the expression of the G-protein-coupled P2Y4 subunit as monomeric or higher-order complex protein. We examined both endogenously expressed P2Y4 subtype with the aid of specific anti-P2Y4 antiserum, and heterologously transfected P2Y4-tagged receptors with the use of antitag antibodies. In both cases, we found the P2Y4 receptor displaying molecular masses corresponding to monomeric, dimeric and oligomeric structures. Experiments performed in the absence of reducing agents demonstrated that there is a strict correlation among the multiple protein bands and that the multimeric forms are at least partially assembled by disulphide bonds. The direct demonstration of P2Y4 homodimerisation comes instead from co–transfection and differential co–immunoprecipitation experiments, with the use of differently tagged P2Y4 receptors and antitag antibodies. The structural propensity of the P2Y4 protein to form homo-oligomers may open the possibility of a novel regulatory mechanism of physiopathological functions for this and additional P2Y receptors

    Methylation Markers of Early-Stage Non-Small Cell Lung Cancer

    Get PDF
    Despite of intense research in early cancer detection, there is a lack of biomarkers for the reliable detection of malignant tumors, including non-small cell lung cancer (NSCLC). DNA methylation changes are common and relatively stable in various types of cancers, and may be used as diagnostic or prognostic biomarkers.We performed DNA methylation profiling of samples from 48 patients with stage I NSCLC and 18 matching cancer-free lung samples using microarrays that cover the promoter regions of more than 14,500 genes. We correlated DNA methylation changes with gene expression levels and performed survival analysis.We observed hypermethylation of 496 CpGs in 379 genes and hypomethylation of 373 CpGs in 335 genes in NSCLC. Compared to adenocarcinoma samples, squamous cell carcinoma samples had 263 CpGs in 223 hypermethylated genes and 513 CpGs in 436 hypomethylated genes. 378 of 869 (43.5%) CpG sites discriminating the NSCLC and control samples showed an inverse correlation between CpG site methylation and gene expression levels. As a result of a survival analysis, we found 10 CpGs in 10 genes, in which the methylation level differs in different survival groups.We have identified a set of genes with altered methylation in NSCLC and found that a minority of them showed an inverse correlation with gene expression levels. We also found a set of genes that associated with the survival of the patients. These newly-identified marker candidates for the molecular screening of NSCLC will need further analysis in order to determine their clinical utility

    HMGA1 Reprograms Somatic Cells into Pluripotent Stem Cells by Inducing Stem Cell Transcriptional Networks

    Get PDF
    PMC3499526BACKGROUND: Although recent studies have identified genes expressed in human embryonic stem cells (hESCs) that induce pluripotency, the molecular underpinnings of normal stem cell function remain poorly understood. The high mobility group A1 (HMGA1) gene is highly expressed in hESCs and poorly differentiated, stem-like cancers; however, its role in these settings has been unclear. METHODS/PRINCIPAL FINDINGS: We show that HMGA1 is highly expressed in fully reprogrammed iPSCs and hESCs, with intermediate levels in ECCs and low levels in fibroblasts. When hESCs are induced to differentiate, HMGA1 decreases and parallels that of other pluripotency factors. Conversely, forced expression of HMGA1 blocks differentiation of hESCs. We also discovered that HMGA1 enhances cellular reprogramming of somatic cells to iPSCs together with the Yamanaka factors (OCT4, SOX2, KLF4, cMYC - OSKM). HMGA1 increases the number and size of iPSC colonies compared to OSKM controls. Surprisingly, there was normal differentiation in vitro and benign teratoma formation in vivo of the HMGA1-derived iPSCs. During the reprogramming process, HMGA1 induces the expression of pluripotency genes, including SOX2, LIN28, and cMYC, while knockdown of HMGA1 in hESCs results in the repression of these genes. Chromatin immunoprecipitation shows that HMGA1 binds to the promoters of these pluripotency genes in vivo. In addition, interfering with HMGA1 function using a short hairpin RNA or a dominant-negative construct blocks cellular reprogramming to a pluripotent state. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 enhances cellular reprogramming from a somatic cell to a fully pluripotent stem cell. These findings identify a novel role for HMGA1 as a key regulator of the stem cell state by inducing transcriptional networks that drive pluripotency. Although further studies are needed, these HMGA1 pathways could be exploited in regenerative medicine or as novel therapeutic targets for poorly differentiated, stem-like cancers.JH Libraries Open Access Fun

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
    corecore