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Abstract

Background: Although recent studies have identified genes expressed in human embryonic stem cells (hESCs) that induce
pluripotency, the molecular underpinnings of normal stem cell function remain poorly understood. The high mobility group
A1 (HMGA1) gene is highly expressed in hESCs and poorly differentiated, stem-like cancers; however, its role in these
settings has been unclear.

Methods/Principal Findings: We show that HMGA1 is highly expressed in fully reprogrammed iPSCs and hESCs, with
intermediate levels in ECCs and low levels in fibroblasts. When hESCs are induced to differentiate, HMGA1 decreases and
parallels that of other pluripotency factors. Conversely, forced expression of HMGA1 blocks differentiation of hESCs. We also
discovered that HMGA1 enhances cellular reprogramming of somatic cells to iPSCs together with the Yamanaka factors
(OCT4, SOX2, KLF4, cMYC – OSKM). HMGA1 increases the number and size of iPSC colonies compared to OSKM controls.
Surprisingly, there was normal differentiation in vitro and benign teratoma formation in vivo of the HMGA1-derived iPSCs.
During the reprogramming process, HMGA1 induces the expression of pluripotency genes, including SOX2, LIN28, and cMYC,
while knockdown of HMGA1 in hESCs results in the repression of these genes. Chromatin immunoprecipitation shows that
HMGA1 binds to the promoters of these pluripotency genes in vivo. In addition, interfering with HMGA1 function using a
short hairpin RNA or a dominant-negative construct blocks cellular reprogramming to a pluripotent state.

Conclusions: Our findings demonstrate for the first time that HMGA1 enhances cellular reprogramming from a somatic cell
to a fully pluripotent stem cell. These findings identify a novel role for HMGA1 as a key regulator of the stem cell state by
inducing transcriptional networks that drive pluripotency. Although further studies are needed, these HMGA1 pathways
could be exploited in regenerative medicine or as novel therapeutic targets for poorly differentiated, stem-like cancers.
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Introduction

Recent studies have made great strides in discovering a handful

of factors important in human embryonic stem cells (hESCs) [1–

8]. These genes (or pluripotency factors) have been used to

‘‘reprogram’’ normal, adult somatic cells into hESC-like cells,

called induced pluripotent stem cells or iPSCs. iPSCs hold

enormous promise because they could provide a source of

unlimited, patient-specific stem cells for use in regenerative

medicine, drug screening, or as disease models. Unfortunately,

the derivation of iPSCs is inefficient, and the ability to maintain

and differentiate iPSCs remains a technical hurdle in the field.

Moreover, iPSCs, and even normal hESCs, can acquire abnormal

karyotypes and invasive properties, recapitulating features of

cancer cells [9–13]. Thus, a better understanding of the molecular

mechanisms responsible for normal stem cell properties in hESCs

and iPSCs is needed before these cells can be safely used in the

clinic. Studies to elucidate the underpinnings of normal hESCs

and fully reprogrammed iPSCs should also provide insight

relevant to cancer because pluripotent stem cells and cancer cells

share a subset of transcriptional networks and properties [9]. It will

be critical, however, to identify the molecular mechanisms that

distinguish normal stem cells from malignantly transformed, stem-

like cells.

The high mobility group A1 (HMGA1) gene is highly expressed

during embryogenesis and enriched in hESCs [9], hematopoietic

stem cells (HSCs) [13–16], and poorly differentiated or refractory

cancers [9,15–37], with low or undetectable expression in adult,
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differentiated tissues. This gene encodes the HMGA1a and

HMGA1b protein isoforms [38–39], which are members of the

HMGA superfamily of chromatin remodeling proteins that

include HMGA1a, HMGA1b, and HMGA2 [38–43]. HMGA

proteins are low molecular weight (thus high mobility group)

proteins that bind to AT-rich regions in chromatin and orchestrate

the assembly of transcription factor complexes to modulate

chromatin structure and regulate gene expression

[27,29,30,32,34–36,42–45]. HMGA proteins induce malignant

transformation in cultured cells and cause aggressive tumors in

transgenic mice [18–19,21–37,40–46]. The tumors from HMGA1

mice can be serially transplanted, indicating that they have the

stem cell property of long term self-renewal [32]. HMGA1

expression is highest in cultured cells that are derived from poorly

differentiated cancers, including breast [21,45], prostate [23],

pancreatic [31], uterine [26], colon [34], and lung [30] cancers as

compared to cell lines from more differentiated tumors. Expression

of HMGA1 is also associated with poor differentiation status in

solid tumors arising from different tissues and embryonic origins

[9,26,30,34,47–49]. Moreover, HMGA1 overexpression portends a

poor outcome in diverse tumors, including cancers of the pancreas

[31], brain [9,48], bladder [9], lung [49], and breast [9,47].

HMGA1 is also enriched in refractory hematopoietic cancers [15–

16,18–19,29,33] and in human iPSCs [13]. Together, these studies

in cancer and pluripotent stem cells suggest that HMGA1 could

function to reprogram cells to a more primitive, undifferentiated,

stem-like state.

Previous studies in cancer cells have demonstrated that

HMGA1 directly activates specific genes involved in tumor growth

and progression, including proliferation, migration, invasion,

angiogenesis, genetic instability, resistance to cell death, immune

evasion, and an epithelial-mesenchymal transition in cancer cells,

although its role in embryonic stem cells is poorly understood

[23,26–30,32–36.,45]. Here, we report that HMGA1 promotes

the cellular reprogramming of adult somatic cells to undifferen-

tiated, fully pluripotent stem cells (iPSCs). We also identify

transcriptional networks induced by HMGA1 to drive the stem

cell phenotype in pluripotent stem cells. Our studies provide new

insights into the role of HMGA1 in development, stem cells, and

cellular reprogramming.

Results

HMGA1 Expression Decreases with Differentiation in
hESCs

To better define the role of HMGA1 in pluripotent stem cells, we

investigated its expression in hESCs during differentiation. First,

we assessed HMGA1 expression patterns in H1 hESCs induced to

differentiate into blood cells in an established model of hemato-

poiesis [50]. HMGA1 mRNA was highest at day 0, with levels

dropping dramatically as the hematopoietic cells differentiate (day

10; Fig. 1A) by microarray gene expression profile analysis

(microarray data found in Gene Expression Omnibus, accession

number GSE12531). Notably, the levels of HMGA1 closely parallel

those of the embryonic stem cell and pluripotency factors NANOG,

OCT4, and SOX2. These results were confirmed by quantitative

RT-PCR (qRT-PCR; data not shown). When hESCs are forced to

differentiate into neuroectodermal lineages, we also found that

HMGA1 expression decreases by qRT-PCR, similar to NANOG,

OCT4, and SOX2 (Fig. 1B). Likewise, HMGA1 expression falls and

mirrors that of NANOG, OCT4, and SOX2 during mesodermal

differentiation, as demonstrated by qRT-PCR (Fig. 1C). To

further investigate the role of HMGA1 in pluripotency, we

compared HMGA1 expression in embryoid bodies, fibroblasts,

hESCs, and iPSCs from a study of global gene expression profile

analyses [8]. We found that HMGA mRNA levels were highest in

the pluripotent hESCs and iPSCs with lower levels in differenti-

ated cells (embryoid bodies and fibroblasts; Fig. 1D). Using qRT-

PCR, we found that cultured cancer cells derived from a germ cell

tumor (Tera-2 embryonal cancer cell or ECC line) have ,50%

lower HMGA1 mRNA levels compared to hESCs (Fig. 1E). These

findings indicate that HMGA1 expression is similar to that of key

pluripotency factors as hESCs differentiate and suggest that

HMGA1 could function in maintaining an undifferentiated state in

normal hESCs.

HMGA1 Blocks Differentiation in hESCs
To further investigate the role of HMGA1 in the maintenance

of an undifferentiated state, we determined if forced expression of

HMGA1 in hESCs will affect differentiation. We therefore

engineered H9 hESCs to express HMGA1 by transducing these

cells with a lentiviral vector expressing HMGA1 linked to green

fluorescent protein (GFP) [26]. Control cells were transduced with

a lentiviral vector expressing GFP alone [26]. The hESCs

transduced with the HMGA1a lentivector showed a corresponding

increase in HMGA1 mRNA levels compared to the control

(Fig. 2A). By immunofluorescent cytochemistry, we documented

that the HMGA1 protein was increased in the H9 hESCs

transduced with the HMGA1 lentivirus compared to the control

lentivirus (Fig. 2B, upper panels). In addition, we found that both

SOX2 and cMYC proteins were also increased in HMGA1

hESCs compared to controls (Fig. 2B). To better define the role of

HMGA1 in stem cells, the transduced HMGA1 and control

hESCs were cultured under conditions to promote differentiation

into neuroectoderm as described previously [51–52]. Strikingly,

hESCs expressing exogenous HMGA1 showed no evidence for

differentiation into neuroectoderm. The HMGA1-expressing cells

maintained normal hESC morphology and expression of pluripo-

tency markers (Fig. 2C–D); there was also no expression of

differentiation markers (Fig. 2C). In contrast, the control-GFP cells

underwent dramatic morphological changes, growing as a

monolayer. Likewise, control cells expressed neuronal markers

(A2B5, Nestin, and SSEA1) after culture in differentiation

conditions (Fig. 2C). By qRT-PCR, the HMGA1 cells expressed

significantly higher levels of pluripotency genes after 7 days in

differentiation conditions, including OCT4 (p,0.01), SOX2

(p,0.05), cMYC (p,0.01), and NANOG (p,0.01) compared to

the controls (Fig. 2D). In addition, exogenous HMGA1 levels

remained high (7-fold) compared to controls. Surprisingly, LIN28

expression was not increased in the HMGA1-GFP cells, indicating

that HMGA1 blocks differentiation without maintaining high

levels of LIN28. In this setting, the differentiating factors could be

the primary regulators of LIN28. To determine if HMGA1 alters

growth rates in hESCs, we also performed proliferation (MTT)

assays and found no significant difference in growth rates (Fig. S1).

These results indicate that constitutive expression of HMGA1

blocks differentiation and maintains hESCs in an undifferentiated,

stem-like state.

HMGA1 Enhances Cellular Reprogramming to Fully
Pluripotent iPSCs

Based on the above findings, we hypothesized that HMGA1

promotes cellular reprogramming and could enhance the deriva-

tion of iPSCs. To test this hypothesis, we used standard retroviral

reprogramming technology to transduce bone-marrow derived,

commercial, adult mesenchymal stem cells (MSCs). MSCs

(100,000 cells per reprogramming experiment) were transduced

with the four Yamanaka factors (OCT2, SOX4, KLF4, and
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cMYC or OSKM [1]) plus HMGA1 or control, all expressed by

pMX retroviral vectors as previously described [53–54]. The

addition of HMGA1 to OSKM (denoted HMGA1-OSKM)

resulted in a consistent 2-fold increase in TRA-1-60+iPSC colonies

compared to the control-OSKM transduction (Fig. 3A). Previous

studies showed that TRA-1-60+staining is a reliable early indicator

of fully reprogrammed iPSC colonies [10–11,54–55]. Moreover,

we found that the early HMGA1-OSKM TRA-1-60+colonies

were significantly larger than their control-OSKM counterparts

(Fig. 3B), indicating that HMGA1 enhances the reprogramming

rate, stem cell survival, proliferation, or a combination of these

factors during iPSC generation. To determine if HMGA1 is

required during cellular reprogramming to iPSCs, we blocked

HMGA1 expression or function using a short hairpin RNA

(shRNA) to HMGA1 or dominant-negative construct, respectively.

MSCs were transduced with OSKM as described above. Forty-

eight hours after reprogramming with OSKM, cells were

transduced with a lentivirus containing HMGA1 shRNA or control

shRNA. Strikingly, we found that there was a marked decrease in

TRA-1-60+colonies in the cells treated with HMGA1 shRNA as

compared to controls (p,0.0001; Fig. 3A). Similarly, we found

that the dominant-negative HMGA1 also blocked cellular

reprogramming to iPSCs (p,0.0001; Fig. 3A).

To determine if the MSC-derived TRA-1-60+colonies are fully

reprogrammed and express other standard stem cell markers after

transduction with HMGA1-OSKM, we selected and subcultured

colonies for further analysis with immunoflourescent intracellular

staining after 6 passages. As expected for hESCs and fully

reprogrammed iPSCs, the HMGA1-OSKM clones also expressed

OCT4, NANOG, and alkaline phosphatase (AP) (Fig. 3C). The

HMGA1-OSKM clone (HMGA1-OSKM-4) had a normal

karyotype after culturing the cells for.10 passages (Fig. 3D). In

addition, the HMGA1-OSKM iPSCs could be fully differentiated

into neuronal or meso/endoderm lineages in vitro (Fig. 3E) and

generate teratomas with all three germ layers represented (Fig. 3F).

There was no detectable expression of exogenous OSKM from the

retroviral vectors in the HMGA1-OSKM clone 57 days following

transduction, although the vectors were detectable 21 days after

transduction (data not shown).

Next, we investigated whether HMGA1 enhances cellular

reprogramming of other somatic cells. We therefore transduced

fetal lung fibroblasts (IMR90) with the HMGA1-OSKM or

control-OSKM retroviruses. Similar to our data in MSCs, we

found that HMGA1 significantly enhances the size and number of

TRA-1-60+colonies (Fig. S2). We observed an increase in the

number of iPSC colonies by about 2-fold with HMGA1 in the

reprogramming cocktail. Taken together, our results demonstrate

that HMGA1 promotes cellular reprogramming to an undifferen-

tiated, pluripotent stem-like state in somatic cells of different

origins (MSCs, IMR90 fetal lung fibroblasts).

HMGA1 Modulates the Expression of Pluripotency Genes
Because HMGA1 functions by modulating gene expression,

we hypothesized that it promotes pluripotency by inducing stem

cell transcriptional networks. We therefore assessed the expres-

sion of a subset of endogenous, human embryonic stem cell/

pluripotency genes (OCT4, SOX2, cMYC, NANOG, LIN28, REX1,

hTERT) at early stages (day 12 and 21) in the reprogramming

pools following transduction of MSCs with HMGA1-OSKM or

control-OSKM. At day 12, expression of both SOX2 (p,0.001)

Figure 1. HMGA1 expression falls with differentiation in hESCs and parallels that of other pluripotency genes. A) H1 hESCs were
cultured under conditions to promote hematopoietic differentiation. By days 7–10, hESCs differentiate into mesodermal-hematoendothelial (MHE)
colonies and fully differentiated progeny of all hematopoietic lineages. (See ref. 50 and GEO accession number GSE12531 for microarray data). B)
HMGA1 expression falls in hESCs cultured under conditions to promote neuroectodermal differentiation. HMGA1 decreases with OCT4, NANOG, and
SOX2 by day 10, as shown by qRT-PCR. C) Similarly, HMGA1 expression falls when hESCs differentiate into mesoderm as shown by qRT-PCR. D)
Expression levels of HMGA1 in embryoid bodies (B), fibroblasts (F), hESCs (H), and iPSCs (I) from a published database [8]. E) HMGA1 expression in fetal
fibroblasts, H9 hESCs, and embryonal carcinoma cells (ECC) was assessed by qRT-PCR; HMGA1 expression in the H9 hESCs was arbitrarily assigned a
value of 1.0.
doi:10.1371/journal.pone.0048533.g001
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and cMYC (p,0.01) were 2–3-fold higher in the HMGA1-

OSKM pools compared to the control-OSKM cells (Fig. 4A).

At day 21, expression of SOX2 (p,0.01), LIN28 (p,0.01), and

cMYC (p,0.01) were all significantly increased in the MSCs

reprogrammed with HMGA1-OSKM compared to the control-

OSKM pools (Fig. 4A). Surprisingly, the expression of the other

stem cell genes was not significantly altered in the HMGA1-

OSKM pools compared to controls (data not shown). There

were no significant changes in expression of the exogenous,

murine OCT4, SOX2, KLF4, or cMYC delivered by retrovirus

(see Fig. S3 for qRT-PCR results and Table S1 for primers

specific to the murine OSKM delivered by retrovirus). Of note,

the established iPSC clones (after 10 passages) generated by

transduction of HMGA1-OSKM or control-OSKM had similar

expression of all pluripotency genes assessed, and the expression

levels were similar to those observed in hESCs (data not shown).

These results suggest that HMGA1 enhances the derivation of

iPSCs by inducing the expression of a subset of pluripotency-

associated genes early in the reprogramming process.

To determine if HMGA1 also modulates expression of

pluripotency genes in hESCs, we knocked-down HMGA1 expres-

sion in H9 hESCs using shRNA (shHMGA1) [56] and assessed the

expression of seven embryonic stem cell/pluripotency genes

(OCT4, SOX2, cMYC, NANOG, LIN28, REX1, hTERT). We found

that SOX2, OCT4, cMYC, and LIN28 were all significantly

repressed in the hESCs 96 hours following shRNA-mediated

knock-down of HMGA1 (Fig. 4B). These results were compared to

H9 hESCs treated with a control shRNA vector. To further rule-

out off-target effects of the shHMGA1, we also assessed the

expression of these genes after knocking down HMGA1 using

HMGA1 siRNA (Dharmacon), which targets a different sequence

in the HMGA1 mRNA [30]. Using this approach, SOX2, OCT4,

cMYC, and LIN28 were also repressed after transduction with the

siHMGA1 after 24 hours (Fig. S4). Expression of the other

pluripotency genes did not change significantly, although both

approaches (shRNA and siRNA) resulted in significant knock-

down of HMGA1 mRNA. Of note, there were no gross changes in

colony morphology or proliferation at these early time points using

siRNA or shRNA. Together, our results indicate that HMGA1

modulates a specific subset of stem cell/pluripotency genes during

the generation of iPSCs and in fully pluripotent hESCs.

Figure 2. HMGA1 drives a de-differentiated state. A) HMGA1 expression is increased in hESCs 3 days after transduction with the HMGA1-GFP
lentivirus (HMGA1-GFP) compared to control hESCs (control-GFP). Bars, mean 6 standard deviation. B) i. HMGA1, cMYC and SOX2 proteins are up-
regulated in HMGA1-GFP (red) compared to control-GFP (blue) hESCs. ii. Fluorescence was assessed quantitatively using MetaMorph (Universal
Imaging) version 7.7 (p,0.001 for all genes in HMGA1-GFP compared to control-GFP hESCs). C) i. Control-GFP hESCs (blue) differentiate after
treatment with neuroectodermal differentiation factors and express neural markers (left three panels. red: A2B5-top, Nestin–middle, SSEA1-lower
panel), while the HMGA1-GFP hESCs (red) remain embryonic stem cell colonies and express hESC markers (OCT4), but no neural markers. DAPI was
used to stain nuclei. ii. Quantitative analysis of HMGA1 and the stem cell markers (cMYC and SOX-2) are shown; (p,0.001 for all proteins assessed in
HMGA1-GFP compared to control-GFP hESCs). D) The pluripotency genes SOX2, OCT4, cMYC, and NANOG are up-regulated in the HMGA1-GFP hESCs
(red) compared to controls (blue) in hESCs cultured in conditions that promote neuroectodermal differentiation. Levels of exogenous HMGA1 are also
shown.
doi:10.1371/journal.pone.0048533.g002
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HMGA1 Binds to Pluripotency Gene Promoters
Because HMGA1 binds chromatin to modulate gene expression

[32], we hypothesized that HMGA1 induces an undifferentiated,

pluripotent state by binding to DNA and enhancing transcrip-

tional networks downstream of the stem cell gene targets, such as

cMYC, SOX2, and LIN28 genes. Using MatInspector [57], we

found that the promoter regions of cMYC, SOX2, and LIN28

contain AT-rich regions with putative HMGA1 binding sites

(Fig. 4C). To determine if HMGA1 binds to the promoters of these

genes in vivo, we performed chromatin immunoprecipitation in H9

hESCs. We found that the promoter regions of cMYC, SOX2, and

LIN28 with the putative HMGA1 binding sites were enriched in

HMGA1-binding (Fig. 4D). Furthermore, there was no demon-

strable binding of HMGA1 to the negative control promoter,

HPRT, which was shown in previous studies to lack HMGA1

binding [29]. These results indicate that HMGA1 binds directly to

the cMYC, SOX2, and LIN28 promoters and suggest that HMGA1

enhances pluripotency by inducing expression of cMYC, SOX2,

and LIN28 early in reprogramming.

HMGA1 iPSCs have Promoter Methylation Patterns
similar to hESCs

Prior studies suggest that epigenetic reprogramming is involved

in the induction of pluripotent stem cells [12]. We therefore

investigated promoter methylation patterns in the HMGA1 iPSCs

and reprogramming pools using the Illumina Infinium Methyla-

tion27 platform, which includes probes for 27,576 loci (Fig. S5).

Promoter methylation was assessed from genomic DNA isolated

from a fully characterized iPSC clone (HMGA1-OSKM-A4) and

MSC reprogramming pools 12 and 21 days after transduction with

HMGA1-OSKM or control-OSKM. For comparison, we also

included cancer cells, hESCs, fetal fibroblasts, MSCs, and

previously characterized iPSCs for which promoter methylation

was assessed in a previous study [12]. The promoter methylation

patterns in the fully reprogrammed iPSCs generated by HMGA1–

Figure 3. HMGA1 promotes cellular reprogramming of MSCs to fully pluripotent iPSCs. A) Reprogramming with HMGA1-OSKM results in
more TRA-1-60+iPSC colonies compared to controls, while shHMGA1 and dominant-negative HMGA1 (DN-HMGA1) decreases the number of colonies,
as assayed on day 16 following retroviral transduction. B) The HMGA1-OSKM TRA-1-60+colonies are significantly larger than the control-OSKM
colonies; sizes: mm. C) The HMGA1-OSKM colonies stain positively for standard stem cell markers (TRA-1-60, Nanog, Oct4, and Alkaline Phosphatase or
AP). D) Established HMGA1-OSKM colonies have a normal karyotype. E) HMGA1-OSKM colonies express representative markers from 3 germ layers
when induced to differentiate in vitro. HMGA1-OSKM colonies were either cultured in standard hESC media or under conditions for differentiation
into ectoderm, mesoderm, or endoderm. The appropriate genes for each condition were expressed. F) HMGA1-OSKM colonies form benign
teratomas with constituents from all three germ layers.
doi:10.1371/journal.pone.0048533.g003
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OSKM or control-OSKM were similar to that of hESCs and

other iPSCs. There were no significant differences in the relative

number of CpG sites with high or low levels of methylation in the

HMGA1-OSKM reprogramming pools compared to the OSKM

controls. These findings indicate that the iPSCs reprogrammed

with HMGA1 have similar methylation patterns to hESCs and

other iPSCs and suggest that the enhanced reprogramming by

HMGA1 does not occur through large changes in global

methylation patterns.

Discussion

Here, we provide compelling evidence that HMGA1 plays a key

role in cellular reprogramming to a pluripotent stem cell and the

maintenance of the undifferentiated state: 1.) HMGA1 expression is

enriched in hESCs and fully reprogrammed iPSCs, with

intermediate levels in cancer cells and lower levels in differentiated

fibroblasts, 2.) HMGA1 enhances cellular reprogramming of

somatic cells to a pluripotent state, while forced expression blocks

differentiation in hESCs, and 3.) HMGA1 binds to promoters and

induces expression of other pluripotency factors, whereas knock-

down of HMGA1 represses pluripotency factors. In multiple

settings (bone marrow-derived MSCs, fetal lung fibroblasts), more

iPSC colonies formed when HMGA1 was added to the OSKM

reprogramming cocktail, and the colony size was greater in most

cases. Interestingly, mice that are null for HMGA1 have normal

early development [58], while mice deficient in the HMGA family

member, HMGA2, have a pygmy phenotype, but otherwise

normal early development [59]. Because both HMGA1 and

HMGA2 proteins have a high level of homology and similar

functions in experimental models [18,45], it is possible that there is

functional redundancy, and knock-out of HMGA1 is partially

compensated for by HMGA2. Genetic experiments are underway

to address this issue.

We also discovered that germ cell tumor cells express less

HMGA1 than fully reprogrammed iPSCs and hESCs, suggesting

that a critical level of HMGA1 may be required for a fully

reprogrammed, pluripotent, stem-like phenotype in contrast to a

malignant phenotype. Perhaps the addition of HMGA1 in the

reprogramming cocktail results in a greater proportion of cells that

cross a critical HMGA1 gene threshold and produce fully

reprogrammed iPSCs. Prior studies have shown that reprogram-

ming cancer cell lines with retroviral delivery of pluripotency genes

results in ES-like cells with slower growth rates as well as the ability

Figure 4. HMGA1 regulates pluripotency genes. A) Endogenous SOX2, LIN28, and cMYC are induced more in MSCs reprogrammed with
HMGA1-OSKM (red) compared to control pools (blue). Gene expression in H9 hESCs is shown as a reference (green). B) Pluripotency genes (SOX2,
OCT4, cMYC, LIN28) are repressed following shRNA-mediated knockdown of HMGA1. *p,0.01, **p,0.00001. C) The promoter regions of pluripotency
genes contain putative HMGA1 DNA binding sites (pink ovals) located near putative NFkB sites (grey circles). D) Chromatin immunoprecipitation in
hESCs shows enrichment in HMGA binding in the promoters of SOX2, cMYC and LIN28. IgG was used as a negative control; cMYC antibody and
primers to the B23 promoter were used as a positive control. *p,0.01, **p,0.001.
doi:10.1371/journal.pone.0048533.g004
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to form benign teratomas in vivo and respond to differentiating

agents in vitro [60–63]. iPSCs derived from a colon cancer cell line

(DLD1) also became more sensitive to the cytotoxic agent, 5-FU

[60], although subsequent studies found that iPSCs generated

from another cancer cell line (HuCC-T1 choriocarcinoma cells)

became invasive and lost their response to differentiating or

cytotoxic agents in vitro as well as their ability to form benign

teratomas in vivo when cultured for longer time periods (.120 days

following reprogramming) [63]. These cells had activation of

endogenous cMYC when they lost their potential for pluripotency,

indicating that the reprogramming was reversible. Together, these

studies and our findings presented here suggest that strategies to

induce expression of HMGA1 and that of other pluripotent genes

could reprogram malignant tumors into cells that respond to

differentiating agents. Further studies are needed to test this

hypothesis and could lead to the development of novel therapeutic

strategies to reprogram cancer cells.

The enhanced reprogramming by HMGA1 could also be

exploited to generate patient-specific iPSCs for disease modeling,

drug testing, or regenerative medicine with patient-derived cells.

Surprisingly, we did not find evidence for malignant transforma-

tion in the iPSCs reprogrammed by HMGA1-OSKM. Rather,

there was an increase in the number of TRA-1-60+staining clones

when HMGA1 was included in the reprogramming cocktail,

which is a reliable marker for fully pluripotent iPSCs [54].

Moreover, the teratoma assay showed differentiated tissues from

all three germ layers, further documenting the pluripotent state of

the HMGA1-OSKM iPSCs. The iPSCs could also be differenti-

ated into embryoid bodies, neuroectoderm, or mesoderm,

indicating that the addition of HMGA1 did not interfere with

the pluripotent/differentiation potential of the iPSCs. The

karyotype was normal and promoter methylation patterns were

similar to those observed in hESCs. In preliminary studies, we also

found that HMGA1 significantly enhances reprogramming of

mononuclear blood cells (MBCs) to TRA-1-60+colonies using an

episomal vector approach (unpublished data). This latter approach

has several advantages for potential clinical uses. Most notably, the

reprogramming vectors do not integrate into the genome, thus

avoiding the complication of activating (or inactivating) critical loci

or otherwise disrupting the genome. Episomal vectors are also

ultimately lost as the cells successively divide and the iPSCs

generated from this approach may be less immunogenic [64].

To determine how HMGA1 promotes an undifferentiated,

pluripotent stem cell state, we investigated the expression of stem

cell transcriptional networks and found several key genes that are

induced by HMGA1 in the iPSC pools early in reprogramming,

including SOX2, LIN28, and cMYC. We also discovered that

HMGA1 binds to the promoters of these genes in vivo in hESCs,

suggesting that HMGA1 directly induces their expression.

Interestingly, most HMGA1 transcriptional targets have a

consensus DNA binding site for NF-kB in the promoter regions

near the AT-rich site where HMGA1 binds [32], indicating that

these factors could function together in activating cellular

pathways in stem cells. Based on the MatInspector computational

algorithm and published literature, the pluripotency genes induced

by HMGA1 also include NF-kB sites near the HMGA1 binding

sites, including LIN28, SOX2, cMYC, and OCT4, (Fig. 4C),

indicating that both HMGA1 and NF-kB could promote cellular

reprogramming by inducing expression of pluripotency genes. A

recent study identified HMGA1 as a gene whose translation is

induced by Lin28 in hESCs [65]. This suggests that a positive

feedback loop could exist whereby Lin28 enhances HMGA1

translation and HMGA1, in turn, feeds back to induce expression

of LIN28, along with other pluripotency genes, to activate stem cell

networks. Surprisingly, not all pluripotency genes with predicted

HMGA1 DNA binding sites in their promoters were induced in

the HMGA1 reprogramming pools, indicating that HMGA1

induces a specific stem cell signature in this setting. Further studies

are needed to elucidate all of the critical networks related to

HMGA1 that drive a fully pluripotent state in iPSCs and stem

cells.

In summary, we demonstrate for the first time that HMGA1

enhances cellular reprogramming of somatic cells to a fully

pluripotent state. We also discovered that HMGA1 promotes an

undifferentiated, pluripotent state and blocks differentiation.

These findings provide insight into HMGA1 function in hESCs

that could be exploited for patient-derived iPSCs for use in

regenerative medicine. Although additional studies are needed,

our findings also suggest that HMGA1 transcriptional networks

are important in reprogramming normal cells into stem-like,

malignant cancer cells and that these pathways could be targeted

in therapy.

Materials and Methods

Ethics Statement
All animal experiments were conducted in accordance with a

protocol approved by the Johns Hopkins University Animal Care

and Use Committee (protocol# MO11M279). All mice were

housed in a sterile environment where they had free access to food

and water as outlined in our institutional guidelines.

Cell Culture
MSC1640 mesenchymal stem cells (AllCells, LLC) were

maintained in DMEM (low glucose) with 10% FBS, 16 NEAA,

16 L-Glutamine, 16 Antibiotic/Antimycotic (Invitrogen) and

bFGF (1 ng/ml). IMR90 fetal lung fibroblast cells (ATCC) and

cultured similar to MSC1640, but without bFGF. iPSCs and

hESCs (H1 and H9 from WiCell) were maintained in ES media:

DMEM/F12, 20% Knockout Serum Replacement, 16 NEAA,

16L-Glutamine, 16Antibiotic-Antimycotic, 1 mM 2-Mercapto-

ethanol, bFGF (10 ng/ml for iPSCs or 8 ng/ml for hESCs). The

human embryonal carcinoma line, NTERA-2 cl.D1 (ATCC) was

cultured on matrigel-coated plates under conditions as previously

described [66].

Transduction and Reprogramming Vectors
The pMXs-HMGA1 vector was made by restricting the pMXs

retroviral vector [48] at the BstXI site and subsequently made

blunt using Klenow. The human HMGA1a cDNA was inserted

into pMXs following amplification from pooled human RNA with

the following primers: (F) 59-AGCCAATCCTATG-

GACCTGCTCCTTAGAGAAGGGAA-39; (R) 59-AGC-

CAATCCTATGGAAAGCTGTCCAGTCCCAGAA-39. The

correct HMGA1 sequence construct was confirmed by sequenc-

ing. The pMXs-DN-HMGA1 vector was made by isolating

HMGI (mII,III) from pcDNA3.1/zeo.HMGI(mII,mIII) (a gener-

ous gift from Raymond Reeves, Washington State University, and

described in detail in [67]) by restricting with HINDIII/BamHI;

blunt end cloning was used to introduce the cDNA into pMXs (as

described above). The empty pMXs vector was used as a negative

control.

RNA Interference
The short-hairpin RNA interference vector for HMGA1 targets

59-CAACTCCAGGAAGGAAACCAA-39 and has been de-

scribed elsewhere [56]. The empty vector was used as a negative

control in knockdown experiments similar to a previous study [34].
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The HMGA1 siRNA targets 59-AGCGAAGTGCCAACACCTA-

39 and was obtained from Dharmacon [26]. siCONTROL

(Dharmacon), which contains 4 siRNAs without matches to

human, mouse, or rat genes, was used as the negative control for

the siRNA experiments.

Retroviral Infection and Reprogramming Protocols
DNA vectors pMX-OCT4, pMX-SOX2, pMX-cMYC, and

pMX-KLF4 (M. musculus genes) were generously provided by

Linzhao Cheng (Johns Hopkins University). Retrovirus containing

pMX-OCT4, pMX-SOX2, pMX-cMYC, pMX-KLF4, pMX-

HMGA1, pMX-DN-HMGA1, pMX-shHMGA1, or pMX empty

vector were produced and used for infection as previously

described [49]. During days 7–16 following transduction, cells

were maintained in ES media+0.5 mM sodium butyrate as

previously reported [11].

Immunostaining
Live staining for TRA-1-60 to identify fully reprogrammed

colonies was performed as described [11] using anti-TRA-1-60

(Millipore) and a mouse secondary antibody at a dilution of 1:200

and 1:400, respectively, premixed in hESC media. The TRA-1-

60+putative iPSC colonies were further characterized for stem cell

markers after fixation with paraformaldehyde as previously

described [11]. To assess stem cell markers, the putative iPSC

colonies were stained for immunoflourescence with the following

antibodies: TRA-1-60 (1:200, Millipore), NANOG (1:1000,

Abcam), OCT4 (1:100, Santa Cruz Biotechnology), SOX2

(1:100), cMYC and HMGA1 (1:100) followed by secondary

antibodies conjugated to a Alexa Probes (Molecular Devices) as

previously described [68]. Immunofluorescence intensity calcula-

tions were performed using MetaMorph (Universal Imaging)

version 7.7. Alkaline phosphatase staining was performed using the

Alkaline Phosphatase detection kit (Millipore).

MTT Cell Proliferation Assays
Cells (5,000) were plated onto 96 well plates coated in matrigel

with conditioned media obtained from mouse embryonic fibro-

blasts as described [29]. The media was replaced daily. MTT

assays (Invitrogen) were performed daily for 5 days using 100 ml of

MTT solution (5 mg/ml) added to each well and incubated for

3 h at 37uC according to manufacturer’s instructions. The formed

MTT formazan crystals were dissolved with 500 mL DMSO, and

the spectrophotometric assay was carried out at 590 nm as

described. Each condition was done in quadruplicate, and 2

independent experiments were performed.

Gene Expression Analysis with Quantitative, Reverse
Transcription PCR

Total RNA was isolated using the miRNeasy kit (Qiagen) and

analyzed by quantitative reverse transcription PCR (qRT-PCR) as

we previously described [29]. The sequences for the forward and

reverse primers are listed in Table S1. For transgene expression

analysis, one primer was designed with sequence from the pMX

retroviral vector and the other primer was designed with sequence

from the gene of interest. The expression level of each gene was

normalized to the TATA-binding protein (TBP) gene.

Chromatin Immunoprecipitation (ChIP)
H9 hESCs cells (approximately 5 million) were washed twice

with PBS and collected following incubation in trypsin (0.25%).

Protein was cross-linked to DNA by treatment with formaldehyde

for 8 minutes, after which the reaction was stopped with glycine.

Cells were pelleted and resuspended in cell lysis buffer along with a

protease inhibitor cocktail (Roche). After 10 minutes on ice, the

nuclei were pelleted and resuspended in 200 ml nuclei lysis buffer

with protease inhibitors. Chromatin was sheared by sonication

using the BioRupterH (Diagenode) for two runs of 10 cycles. ChIP

buffer was added to the sonicated samples to a final volume of

1 ml. ChIP was performed either by using the Auto-histone ChIP-

seq kit on the SX-8G IP-StarH Compact platform (Diagenode) or

the SimpleChIP Enzymatic Chromatin IP kit (Cell Signaling

Technology) according to the manufacturers’ instructions.

The sheared DNA-protein complexes were immunoprecipitated

using antibodies to HMGA1 as we described [29]. An IgG

antibody was used as a negative control. Sequence from an

approximately 200 base pair regions of the promoter of the

pluripotency genes containing the predicted HMGA1 binding site

was amplified using PCR. As a positive control, we amplified the

200 bp region containing the cMYC DNA binding site in the B23

promoter and performed immunoprecipitation with the cMYC

antibody as previously described [69].

Genome-wide DNA Methylation Analysis
To assess global promoter methylation, we used the Infinium

(Illumina, Inc.) platform to analyze bisulfate-treated DNA (EX

DNA Methylation kit, Zymo Research) containing 27,578

informative sites near promoter regions as previously described

[10]. Briefly, b values are generated as the signal of methylation-

specific probe over the sum of the signals of the methylated and

unmethylated-specific probes. The score of 1.0 is assigned for full

methylation of a specific CpG site, 0 for the absence of

methylation, with 0#b#1.0 for all signals. Probes with poor

overall signals (p.0.05) were removed from analysis. Only probes

positioned from 21,000 to+200 base pairs around transcription

start sites (TSS) were analyzed. Heat maps were based on

hierarchical clustering of b values using Euclidean distance and

Ward’s algorithm, and all probes mapped to the genome (National

Center for Biotechnology Information Build 36.3) using the bowtie

algorithm and ultrafast and memory-efficient alignment of short

DNA sequences (Genome Biology, 10, R25) with genome

annotation matching the release of the Ensembl database. X-

linked genes were removed from the analysis.

Teratoma Assay
iPSCs were expanded to.80% confluency on 6-well plates. For

each teratoma, cells from 6 wells were treated with trypsin, washed

in PBS, and resuspended in 100 ml PBS. Mice (NOD/SCID) were

injected subcutaneously with a mixture of 100 ml cells+100 ml

hESC qualified Matrigel (BD Biosciences). The mice underwent

necropsy when teratomas became evident (after 6–8 weeks).

Tumors were excised and tissues stained with hematoxylin and

eosin (H & E) to identify the various germ layers.

Supporting Information

Figure S1 HMGA1 does not alter proliferation in hESCs. The

MTT cell proliferation assay shows that the H9 hESCs transduced

to express HMGA1 grow at a similar rate to that observed in the

control H9 hESCs, transduced with the GFP vector alone. This

assay was done in triplicate; each time point shows the mean+/2

the standard deviation.

(DOCX)

Figure S2 HMGA1 promotes cellular reprogramming of IMR90.

A) Reprogramming with HMGA1-OSKM results in more TRA-

1-60+ iPSC colonies compared to controls. B) The HMGA1-
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OSKM TRA-1-60+ colonies are significantly larger than the

control-OSKM colonies. Numbers represent mm diameters.

(DOCX)

Figure S3 Transgene expression in early stage reprogramming

pools. Expression levels of the OCT4, SOX2, cMYC, and KLF4

transgenes were analyzed by qRT-PCR at day 12 and day 21

following the start of reprogramming in MSCs.

(DOCX)

Figure S4 HMGA1 KD targets pluripotency genes. Pluripoten-

cy genes (SOX2, OCT4, cMYC, LIN28) are repressed following

knockdown of HMGA1, assessed 24 hours following siRNA

transfection.

(DOCX)

Figure S5 Global promoter DNA methylation signatures in

HMGA1-OSKM or control-OSKM iPSCs. Unsupervised hierar-

chical clustering of CpG loci shows the greatest variation across

cell types. The 2D-hierachial cluster analysis, performed using the

Euclidean distance on 38 cell lines, and 414 loci, places the cell

lines described in this study into context in the complex network of

methylation changes described in Ohm et al. [12]. The HMGA1-

OSKM lines are marked in the top margin in blue, while the

control-OSKM lines are marked in green. The partially

reprogrammed cells collected at days 12 and 21 cluster on the

right side with fibroblasts and other partially reprogrammed

iPSCs, while the late passage HMGA1-OSKM or control-OSKM

lines are found on the left with hESCs and other fully

reprogrammed iPSC lines. Methylation patterns for most of the

cancer cells (colon, breast, osteosarcoma, fibrosarcoma) located in

the middle of the heat map are distinct from both the fibroblasts

and pluripotent cells, with more extensive methylation globally

and patterns that are negatively correlated with the methylation

patterns observed in pluripotent cells. Dark blue – low

methylation, light blue – high methylation.

(DOCX)

Table S1 Primers used in this study.

(DOCX)
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