44 research outputs found

    Novel genotoxins that target estrogen receptor- and androgen receptor- positive cancers : identification of DNA adducts, pharmacokinetics, and mechanism

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.Vita.Includes bibliographical references.We have designed and synthesized novel molecules capable of selectively killing tumor cells that aberrantly express steroid hormone receptors. Many human breast cancers express high levels of the estrogen receptor (ER), and most prostate cancers express the androgen receptor (AR). We reasoned that the potential genotoxic effect of DNA adducts would be increased in target cells if these adducts were camouflaged by their association with receptor proteins. This association could shield the DNA adducts from repair proteins and thus increase the toxicity towards a tumor cell. Furthermore, these hormone receptors are transcription factors and an interaction between the protein and the DNA adduct could disrupt cellular signaling events, thus leading to further toxicity. We have synthesized bifunctional agents that contain an aniline mustard linked to ligands for tumor specific hormone receptors. To target ER(+) breast cancers, an aniline mustard was linked to estradiol at the 7[alpha] position (E2-7[alpha]), and to target AR(+) prostate cancer, the aniline mustard was linked to estradien-3-one at the 11[beta] position (11[beta]). Competitive binding experiments show that E2-7[alpha] and 11[beta] compete well with the natural ligands for the ER and AR, respectively. Clonal survival studies have shown that hormone receptor expressing malignant cell lines are more sensitive to our compounds than a corresponding receptor deficient line. [¹⁴C]-E2-7[alpha] and [¹⁴C]- 11[beta] have been formulated in Cremophor-EL and exhibit good bioavailability and stability when injected into mice intraperitoneally. E2-7[alpha] inhibits the growth of ER(+) HeLa cells and 11[beta] inhibits the growth of AR(+) LNCaP cells, both in xenograft mouse models.(cont.) The compounds are well tolerated by mice after the therapeutic regimens. Stable DNA adducts have been isolated and detected by electrospray mass spectrometry and accelerator mass spectrometry has provided us with a means of quantifying the number of DNA adducts formed in vivo. E2-7[alpha] DNA adducts are repaired, in part, by nucleotide excision repair but the adducts persist longer in ER(+) cells than in ER(-) ones. Melphalan adducts, however, are repaired with equal rates in both cell lines. This result provides evidence in support of the repair shielding hypothesis and suggests that it may be a contributing mechanism to the increased toxicity observed for the ER(+) cell line in the clonal survival study.by Shawn M. Hillier.Ph.D

    Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution

    Get PDF
    Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting

    Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system

    Get PDF
    This work demonstrates the application of a 3D culture system - Cells-in-Gels-in-Paper (CiGiP) - in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct - prepared by stacking multiple sheets of paper containing cell-embedded hydrogels - generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation.Chemistry and Chemical Biolog

    Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes

    Get PDF
    Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis..Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore