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Abstract 

 This work describes a 3D, paper-based assay that can isolate subpopulations of cells based 

on their invasiveness (i.e., distance migrated in a hydrogel) in a gradient of concentration of 

oxygen (O2).  Layers of paper impregnated with a cell-compatible hydrogel are stacked and 

placed in a plastic holder to form the invasion assay. Stacking the layers of paper assembles them 

into 3D tissue-like constructs of defined thickness and composition.  The plastic holder ensures 

the layers of paper are in conformal contact; this geometry allows the cells to migrate between 

adjacent layers through the embedded hydrogel.  In most assays, the stack comprises a single 

layer of paper containing mammalian cells suspended in a hydrogel, sandwiched between 

multiple layers of paper containing only hydrogel (into which the cells migrate).  Cells in the 

stack consume and produce small molecules; these molecules diffuse throughout the stack to 

generate gradients both in the stack, and between the stack and the bulk culture medium.  Placing 

the cell-containing layer in different positions of the stack, or modifying the permeability of the 

holder to oxygen or proteins, alters the profile of the gradients within the stack.  Physically 

separating the layers after culture isolates subpopulations of cells that migrated different 

distances, and enables their subsequent analysis or culture.  Using this system, three independent 

cell lines derived from A549 cancer cells are shown to produce distinguishable migration 

behavior in a gradient of oxygen. This result is the first experimental demonstration that oxygen 

acts as a chemoattractant for cancer cells.  
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Significance Statement  

 The invasion of cancerous cells from a tumor into surrounding tissues is one contribution 

to metastasis—a major contributor to death for patients with cancer.  There is a strong link 

between the directed invasion of cancer cells and the gradients of molecules formed in the 

microenvironment of the tumor.  Using a paper-based invasion assay, this work demonstrates 

that oxygen—a nutrient known to induce significant behavioral changes to cells within a tumor 

in a concentration-dependent manner—can also act as a chemoattractant, resulting in the 

migration of cancer cells towards higher concentrations of oxygen.  This finding, and the 

invasion assay described, could lead to a better understanding of oxygen-based chemotaxis in 

cancer, and ultimately new strategies for managing metastasis.    
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Introduction 

 

Hypoxia—the reduction of levels of oxygen tension to values below normal in a tissue—is 

toxic to cells (1, 2). Cancer cells exposed to hypoxia, both in vitro and in vivo, undergo genetic 

and/or phenotypic changes that influence cellular metabolism, proliferation, and development of 

radio/chemo-resistance (3-6). These changes allow the cells to survive in stressful environments. 

Gradients in concentration of oxygen (we use “oxygen” to mean O2) as well as other small 

molecules (e.g., glucose, nutrients, signaling factors, cellular waste products) (1-4, 6) develop 

normally in tissue due to competition between the supply of oxygen (a process dictated by mass 

transport) and its consumption by cellular metabolism. These gradients span ~180 µm radially 

from a typical blood vessel. Gradients also develop in solid tumors, but are steeper than those 

formed in normal tissue due to poorly developed and distributed blood vessels.    

Mathematical models have predicted that gradients of oxygen within a tumor direct the 

migration of cancer cells from the primary tumor to surrounding tissue (5), but to date there has 

been limited experimental evidence against which to compare these models. This lack of 

experimental data is due largely to the difficulty in controlling and measuring gradients of 

oxygen in living tissue, and to the difficulty associated with analyzing the migratory response of 

cells in conventional model systems (both in vivo and in vitro) (7-11). These mathematical 

models predict that asymmetric gradients of oxygen and other small molecules such as glucose 

can cause differential rates of proliferation of cells in a tumor, and these gradients ultimately 

contribute to the formation of primary tumors with irregular shapes (5).  The models also predict 

an asymmetric migration of cells by the budding and the splitting-off of small populations of 

cells from the primary tumor. The migration of small groups of cells from the primary tumor is 

termed collective invasion, and has been observed both in vivo and in vitro (12-18).       
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There are a number of methods to assess cellular migration and invasiveness in vitro (9-11, 

19-23); these methods rely on quantifying movement across two-dimensional (2D) substrates or 

through three-dimensional (3D) gels. The concentration gradient of small molecules can be 

controlled temporally and spatially (at length scales of tens of microns, which is the scale of a 

single cell) in a microfluidic device (7, 8, 24-28). These devices are often fabricated in optically 

transparent materials and make it possible to visualize cell migration in real time (19).  Despite 

the experimental control offered by a microfluidic device, commonly used invasion assays—

such as the Transwell assay (otherwise known as a Boyden chamber), or a Dunn chamber—

sacrifice these precisely defined gradients for ease-of-use, simple end-point readouts, and 

scalability (9). It is not possible to form gradients of oxygen in a Transwell assay or in a Dunn 

chamber, and the migratory behavior of cells in response to hypoxic gradients cannot be studied.  

While a variety of microfluidic devices have been developed to control precise gradients of 

concentration of oxygen (7, 8, 24-29), only recently has a device been used to investigate the 

migration of cells in such gradients (29).  Tung et al. demonstrated that oxygen acts as a 

chemorepellant for A549 cells and these cells migrate toward lower concentrations of oxygen in 

the presence and absence of an overlapping concentration gradient of stromal cell-derived factor 

1 (SDF-1); the gradient of SDF-1 was perpendicular to the concentration gradient of oxygen 

(29). 

To determine if gradients of oxygen direct cellular invasion, we developed an in vitro assay 

in which cells are cultured in a 3D construct that enables us to analyze cellular migration within 

a tissue-like environment (Fig. 1A).  Unlike most commonly used invasion assays (9, 10, 19, 22, 

23, 29), which impose a gradient of molecules on cells to direct their movement, this assay 

mimics the mechanism by which gradients are generated in vivo (30-33), and allows the cells to 
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consume and secrete molecules within a diffusion-dominated environment.  

A paper-based invasion assay—based on the previously published “Cells-in-Gels-in-Paper”, 

or CiGiP (30-33)—combines the simplicity of commonly used invasion assays with the ability of 

a microfluidic device to generate gradients of small molecules (albeit with significantly less 

precision than those generated in a microfluidic device).  A unique feature of this assay is the 

ability to isolate easily cells that migrated different distances by physically separating the layers 

of the 3D construct (by peeling them apart) after a given period of incubation (Fig. 1). In CiGiP, 

individual layers of paper are impregnated with cells suspended in a hydrogel and assembled into 

tissue-like structures by stacking the individual layers. The stack is placed in a holder that is 

impermeable to gases and proteins. We designed the holder to produce a monotonically 

decreasing gradient of oxygen from the top of the stack to the bottom. The top of the stack is in 

contact with bulk culture medium; the bottom of the stack only receives oxygen and nutrients 

that diffuse (past the cells) from the top of the stack (30-33).  This structure, which we refer to in 

this paper as an “invasion stack” is suitable for assaying cellular invasion for four reasons: i) 

hydrogels easily wick into and fill the thickness of the paper; ii) the individual layers are in 

conformal contact, and cells are able to migrate between them; iii) the layers are easily separated 

from one another, and the location of the cells in the stack (or the distance those cells migrated in 

the 3D hydrogel) be assessed without the use of a confocal microscope; and iv) paper is 

commercially available in a 40 µm thickness (Whatman 105), providing a high resolution for 

distinguishing variable distances migrated by the cells from their original position (32, 33).   

This manuscript demonstrates that invasion assays can be performed in the 3D culture 

environment of the CiGiP system.  Using the invasion stacks, we demonstrate that 

subpopulations of the A549 cancer cell line undergo directed movement toward higher 
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concentrations of oxygen (i.e., chemotaxis).  This result is, to our knowledge, the first 

demonstration that different cancer cell lines are distinguishable by their migratory response to a 

gradient of concentrations of oxygen.  While the exact mechanism of cellular movement (and 

thus invasion) in these gradients of concentrations of oxygen is not understood, it may lead to a 

better understanding of strategies used in cancer therapies, and provide a model system to 

elucidate the migratory behaviors of mammalian cells in 3D environments. 

   

Results 

 Cancer cells readily invade multiple layers of the invasion stack. In a standard 

experiment, we assembled nine layers of wax-patterned paper into an invasion stack (Fig. 1A). A 

single layer of paper containing a suspension of cells in a hydrogel (a “seeded layer”, labeled 

“layer 0”) was sandwiched between layers of paper containing only hydrogel. We refer to the 

layers containing only hydrogel as the “invaded layers” and label each with a “+” or “–” and a 

number to signify its position relative to the seeded layer (the “+” indicates a layer closer to the 

top of the stack and the oxygen-containing medium).  The details of fabricating wax-printed 

layers of paper and culturing mammalian cells within stacks are similar to assays based on 

CiGiP, which have been described previously (30-33); a detailed description of the procedures 

used in this work can be found in the Supplemental Information. 

 Each layer contained 20 hydrophilic zones surrounded by hydrophobic wax boundaries.  

The ability to examine multiple zones in a single assay allowed us to carry out replicate 

experiments in parallel, and obtain statistically relevant data from a single invasion stack. Ten of 

the zones in each layer contained neither hydrogel nor cells suspended in hydrogel; these “blank” 

zones allowed us to determine the fluorescence background of each layer of paper (Fig. 1A), and 
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aided in data analysis. 

 We cultured the invasion stacks in poly(methyl methacrylate) (i.e., “acrylic”) holders, 

which ensured the layers were in conformal contact throughout the experiment (Fig. 1B). This 

configuration allowed cells to invade vertically between adjacent layers, but not laterally 

between zones of a given layer. Additionally, the impermeability of the acrylic holders to oxygen 

and other molecules allowed us to control the mass transport of oxygen and nutrients from the 

bulk culture medium to the layers of the invasion stack (30-33). 

 In this paper, we compare three types of A549 cells in the invasion stacks: i) A549, which 

are basal epithelial cells of a human alveolar adenocarcinoma (34); ii) A549-HGF, which are 

A549 cells engineered to express hepatocyte growth factor (HGF) constitutively (35, 36); and iii) 

A549-HGF-M, which is a subclone of the A549-HGF cells derived from a lung metastasis in a 

xenograft tumor grown in an immune-compromised mouse. 

 After culturing the stack in serum-containing medium for a given period of time, we 

disassembled the holder, separated the nine layers of the invasion stack, and imaged each layer in 

parallel with a commercially available flatbed fluorescence scanner. Figure 1C contains images 

of a representative invasion stack of GFP-expressing A549-HGF-M cells after 24 hours of 

culture (initially only layer 0 contained cells). Cell-containing zones are in a checkerboard 

pattern with only two zones of the first row of the image in Figure 1D containing cells. Darker 

regions correspond to increased fluorescence intensity and a larger number of GFP-expressing 

cells; darker regions in the zone correlate with a higher density of cells.  The pattern of the 

hydrophobic wax is also visible in the image, and is due to the autofluorescence of the wax.   

 Cells invade not only layers in direct contact with the seeded layer (i.e., layer +1 and layer 

-1), but also layers that are further than two positions from the seeded layer; distances of > 80 
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microns. Cells in these distant layers are in aggregates despite having significant space within the 

zone, while the more populated layers (i.e., layers -1, 0, +1) fill the zone uniformly (Fig. 1C).  

This observation suggests these subpopulations of cells invade in a multi-cellular manner, 

indicative of collective invasion and multi-cellular streaming (see Supplemental Figure 1 for 

high-resolution images) (15). 

 

Cellular invasion can be imaged and quantified in the invasion stack. To quantify the 

distribution of cells in the invasion stack, we collected a fluorescent image of each layer of paper 

in the stack after 24 hours of culture (Fig. 1C).  We measured the fluorescence intensity of each 

zone with ImageJ, and calculated the “background fluorescence intensity” for each layer as the 

average fluorescence intensity of the 10 blank zones plus three times their standard deviation.  If 

the fluorescence intensity of a cell-containing zone was less than the background fluorescence 

intensity for a given layer, then we set its fluorescence value to zero. Figure 1E shows a plot of 

the distribution of fluorescence intensities of each cell-containing zone for the images shown in 

Figure 1C. The distribution is normalized to the total fluorescence intensity of the stack, and 

displays the average fluorescence value for all of the zones as a green bar and the variation of 

fluorescence between the zones as a black error bar, which corresponds to one standard 

deviation.  

 In addition to the low-resolution fluorescent images, we also obtained confocal images of 

the cells in the different layers of the invasion stack. Figure 1F is a representative confocal image 

of the cells from one of the zones in layer 0 of Figure 1C. The image shows the cells are 

suspended in hydrogel with minimal interaction between the cells and the fibers of the paper. 

The fibers of the paper appear blue due to their autofluorescence upon excitation with UV light. 
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Metastatic subclone of A549 cells shows more chemotactic behavior than parental cell 

lines in the paper-based invasion stacks. To determine if cells of different metastatic potential 

displayed similar trends in invasiveness in vitro and in vivo, we compared the invasiveness of the 

A549, A549-HGF, and A549-HGF-M cells in the invasion stack and in immune-compromised 

mice. 

We assembled invasion stacks in the configuration shown in Figure 1; the seeded layer 

contained 100,000 cells/zone.  Each invasion stack was incubated for 24 hours in an acrylic 

holder, which only permitted the exchange of nutrients between the bulk culture medium and the 

top of the stack. The distribution of each type of cell compiled from three separate invasion 

stacks is shown in Figure 2 (each stack contained 10 replicate zones, and the mean values and 

standard deviations are for all 30 replicates). For each type of cell, a large percentage of cells 

remained in the seeded layer (> 20%). The distribution of the A549 and A549-HGF cells was 

symmetric around the seeded layer with no statistical difference in the percentage of cells in 

layers +1 and -1. These data suggest the cells invaded the neighboring layers as a result of either 

chemokinesis or from a crowding effect of cells in the seeded layer (37).  

The distribution of A549-HGF-M cells in the invasion stack was asymmetric, with: 50% ± 

2% of all cells in the invasion stack migrating upwards toward the source of nutrients, 28% ± 1% 

of all cells in the invasion stack migrating downwards away from the source of nutrients, and 22 

± 3% of all cells remaining in the seeded layer.  Each of the types of cells lines also contained a 

detectable subpopulation of cells (~1% of the total number of cells in the invasion assay) in the 

layer closest to the source of fresh medium (layer +4). 

To determine whether the observed differences between these three types of cells in our 

invasion assay correlate to the potential of these cells to form metastatic colonies in the lung of 
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xenograft models, we implanted equal numbers of each cell line subcutaneously into immune-

compromised mice. We measured the volume of each tumor and counted the number of 

metastatic clones (mets) in the lungs of each mouse 22 days after implantation (n=10 mice), or 

once the volume of the primary tumor reached 1,000 mm
3
 (n=10-12 mice). A detailed 

experimental protocol for the implantation and analysis of the metastatic clones, as well as 

representative images obtained from the mice, are in the SI.   

 Over a period of 22 days, the parental A549 tumors (with volumes of 404 ± 139 mm
3
) 

generated significantly fewer mets (~1 ± 1 mets) than the other two cell line-derived xenograft 

tumors (P < 0.0001); this observation suggests the parental A549 cells have the lowest metastatic 

potential in vivo (Fig. S2E).  There was no statistical difference between the number of lung mets 

measured in mice bearing tumors derived from A549-HGF (73 ± 79 mets, 1512 ± 594 mm
3
) and 

A549-HGF-M cells (39 ± 40 mets, 1905 ± 1031 mm
3
). The parental A549 cells, however, 

generated statistically indistinguishable numbers of mets (46 ± 36 mets) when the tumors were 

allowed to grow to similar sizes as the tumors generated from A549-HGF and A549-HGF-M 

cells (Fig. S2F).  All three types of cells, therefore, have equal metastatic potential in the long 

term, which is a result that correlates with the presence of rapidly moving cells (cells in layer +4) 

in all three types of A549 cells in the invasion assay. 

 The presence of more cells in layer +1 than layer -1 in the invasion stack for the A549-

HGF-M cells (Fig. 2C), does not seem to correlate to the presence of additional mets in the lungs 

of the mice.  We, however, do not yet know how this subpopulation of slowly moving cells that 

undergo chemotaxis towards higher concentrations of oxygen may increase the metastatic 

potential of the population in: i) immunocompetent mice, ii) humans, iii) organs other than the 

lung, iv) implantations of longer duration than weeks, and v) implantations to sites other than 
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subcutaneous.          

 The subpopulation of cells that migrated preferentially toward bulk culture medium in the 

invasion assay raises four questions: i) Is the distribution of the cells in the invasion stack a result 

of chemokinesis (random migration within a chemical stimuli), chemotaxis (migration of cells in 

response to a gradient of concentration of a chemical), or a combination of the two? ii) Is the 

distribution an artifact of cells proliferating at different rates between layers experiencing 

different oxygen tensions due to their location in the stack? iii) If the cells in the invasion stack 

are undergoing chemotaxis, which component(s) in the medium (i.e., oxygen, glucose, autocrine 

factors, waste products) is (are) the main driver(s) of this preferential migration? iv) Are there 

differences in a given population of cells that pre-dispose some cells to be highly invasive and 

others to be less invasive, and can we use the invasion stack to separate these different sub-

populations? 

 We carried out experiments with the invasion stacks to address each of these questions, and 

discuss our results in the following sections.   

 

Highly invasive cells are distinguishable after a short period of culture.  To estimate the 

rate at which the highly invasive subpopulations of HGF-expressing cells migrate from layer 0 to 

layer +4 of the invasion assay (Fig. 2B and 2C), we monitored the migration of the A549-HGF-

M cells as a function of time.  Each stack was cultured under the same conditions—the seeded 

layers contained 100,000 cells/zone, and the stack was cultured in the acrylic holder shown in 

Figure 1B—but destacked after an incubation period of 1, 12, or 48 hours.  

 After 1 hour of culture (Fig. 3A), three separate sub-populations of cells emerge: i) highly 

invasive cells that quickly migrate from the seeded layer to the layer closest to the source of 
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fresh medium (4% ± 5% of total cells in the assay); ii) invasive cells that migrate both toward 

and away from the source of fresh medium equally (20% ± 13% of total cells in the assay); and 

iii) non-invasive cells that do not migrate from the seeded layer (77% ± 23% of total cells in the 

assay).  Increased periods of culture increased the percentage of invading cells to total cells in 

the assay from 20% ± 13%  (after 1 hour of culture, Fig. 3A) to 80% ± 6%  (after 12 hours of 

culture, Fig.3B) and 90% ± 2% (after 48 hours of culture, Fig. 3C), respectively.  The ratio of 

cells invading toward the source of nutrients versus away from the source of nutrients also 

increased progressively (from 1.6 ± 0.2 at 12 hours, and 3.0 ± 0.5 at 48 hours of culture).  We 

note that changes in the proliferation rate of cells in different layers of the invasion stack may 

affect the final distribution of cells in the stack for prolonged periods of culture (i.e., cells closer 

to the source of nutrients could be proliferating faster).  

 These results show that a subpopulation (~4% ± 5%) of the A549-HGF-M cells undergo 

rapid migration in the invasion stack and migrate 160 µm in 1 hour.  The more slowly moving 

A549-HGF-M cells, migrate preferentially towards the source of nutrients but still migrate 

outward in both directions from the seeded layer; this suggests that both chemotaxis and 

crowding play a role in the final distribution of the cells. To determine the effect of crowding on 

invasiveness in our system, we investigated the effect of seeding density on the distribution of 

A549-HGF-M cells in the invasion stack.    

  

 Increasing the density of cells in the seeded layer increased short-range invasiveness 

but decreased long-range invasiveness. To determine if the cellular density of the seeded layer 

influenced the final distribution of invading cells, we incubated invasion stacks containing 10 x 

10
3
, 33 x 10

3
, or 100 x 10

3 
A549-HGF-M cells/zone for 24 hours (Fig. 3 D-F). The percentage of 
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invading cells to total cells in the invasion assay increased progressively from 25% ± 7% for a 

seeding density of 10 x 10
3
 cells/zone to 45% ± 14% for 33 x 10

3
 cells/zone, and 80% ± 5% for 

100 x 10
3
 cell/zone.   

We observed a population of cells that moved rapidly to layer +4 for all three seeding 

densities, but the lowest seeding density (33 x 10
3
 cells/zone) had a significantly larger 

percentage of cells (4.5% versus 1%) in layer +4 than the highest seeding density. We only 

observed a statistically significant bias (p <0.01) in the distribution of slowly moving cells 

(layers +1 and -1) for cell seeding densities of 33 x 10
3
 cells/zone (Fig. 3E) and 100 x 10

3
 

cells/zone (Fig. 3F).  This result suggests that the slowly moving subpopulation of cells undergo 

chemotaxis only for larger seeding densities.  To validate further that chemotaxis was occurring 

in the invasion stacks, we placed the seeded layer in different positions of the invasion stack and 

placed the cells at opposing ends of the gradients.  

   

 Metastatic cells undergo chemotaxis in the invasion stack. The biased migration of the 

A549-HGF-M cells toward the source of nutrients suggests that a subpopulation of cells in the 

invasion stack undergo chemotaxis.  To validate this hypothesis, we compared the extent of 

cellular invasion when the seeded layer was positioned at either the top or bottom of the invasion 

stack. A comparison of Figures 4A (seeded layer positioned at the top of the stack) and 4B 

(seeded layer positioned at the bottom of the stack) indicates invasion is chemotactic because a 

larger percentage of cells moved toward the source of nutrients (61% ± 6% of the cells in the 

seeded layer, Fig. 4B) than away from the source of nutrients (12% ± 3% of the cells in the 

seeded layer, Fig. 4A).   

Gradients of molecules that may elicit chemotaxis of cells in the invasion stacks could be 
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formed by consumption of molecules present in the medium (e.g., oxygen, glucose) or 

generation of molecules secreted by the cells (e.g., signaling molecules, HCO2
-
, H

+
, and other 

waste products). We, therefore, engineered holders that would allow us to determine whether 

oxygen was the primary cause for chemotaxis in the invasion stack.  

 

Oxygen is the primary chemo-attractant in the invasion stack. To determine if oxygen 

was the primary chemoattractant inducing the directed movement we observed in the invasion 

stacks of A549-HGF-M cells, we decoupled the gradient of oxygen from three other possible 

candidates: proteins from the medium, autocrine factors, and waste products.   

We engineered two variants of the holder shown in Figure 1.  In the first variant, both the top 

and bottom plate contained a series of holes that were permeable to both gases and proteins, and 

permitted exchange between bulk culture medium and the top and bottom of the invasion stack 

(Fig. 4C).  In the second variant, the top and bottom plate also contained a series of holes; the 

holes in the bottom plate were sealed with a 200 µm thick layer of poly(dimethyl)siloxane 

(PDMS). PDMS is a gas-permeable material and allowed the exchange of oxygen and CO2 

between the bulk culture medium and the bottom of the stack, but prevented the diffusion of 

other small molecules. Since oxygen should have a symmetric gradient of concentrations in both 

types of invasion stacks, and proteins should have an asymmetric gradient of concentrations in 

the second invasion stack but not the first, we could determine if oxygen was the primary 

chemoattractant if the cells showed a symmetric distribution in both stacks.  Figure 4C and 4D 

do, indeed, show symmetric distributions.  These results, overall, suggest that the gradient of 

oxygen formed in the invasion stack is the primary chemoattractant for this system (i.e., number 

of layers, thickness of paper, density of cells, and type of cell). 
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 The percentage of highly invasive cells is dictated by the culture environment, and is 

not a result of genetic or phenotypic predisposition of a subpopulation of cells.  To 

determine if the sub-population of the highly invasive HGF-expressing cells, which migrated to 

layer +4 had a stable genotype or phenotype that was intrinsically more invasive than the cells 

that remained in the seeded layer, we recovered A549-HGF cells isolated from layer 0 and layer 

+4 from an invasion stack and compared their invasiveness in subsequent invasion stacks. We 

expanded the two subpopulations of cells in separate 2D culture flasks (the number of isolated 

cells was too few to perform an invasion assay) and then seeded them into two separate layers at 

a density of 100,000 cells/zone (Fig. 5A). We assembled invasion stacks for each type of cell in 

the format shown in Fig. 1B and cultured the stacks for 24 hours.   

 The distribution of cells in the invasion stacks of these two different populations of cells 

was nearly indistinguishable (Fig. 5B). These results suggest that the rapidly invading cells do 

not maintain a stable phenotype in 2D culture. Other cancer cell lines or primary cells may 

behave differently and therefore this assay could be used to isolate, enrich, and characterize cells 

of a specific phenotype (i.e., cancer stem cells). 

 

Discussion. 

This work describes results obtained from a newly developed paper-based invasion assay in 

which: i) We demonstrate the ability to isolate and recover sub-populations of cells based on the 

distance migrated in the assay. ii) Cell lines with a higher metastatic potential in vivo undergo 

chemotaxis rather than chemokinesis in response to the gradient of oxygen formed during 

culture. iii) The highly migratory phenotype of subpopulations of A549 cells within the 
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metastatic cell lines is not stable under 2D culture, and this phenotype may be dependent on the 

specific niche conditions within the invasion stack.    

This paper-based assay has several attractive characteristics (9-11, 19-23) that make it useful 

in studying cellular invasion. i) Easy to assemble. We pipette suspensions of cells in the liquid 

phase of a hydrogel, and allow the gel to form around the cellulose fibers of the paper so that 40-

micron thin layers of hydrogel can be manipulated manually. Multiple layers are assembled to 

form invasion stacks of defined thickness. These manipulations are straightforward to perform.  

ii) Modular in design. We controlled the distribution of cells seeded in the invasion stack simply 

by changing the components (e.g., types of cells, density of cells) in each layer. iii) Easy to 

analyze, and to recover, cells from the layers. The ability to separate the layers of paper at the 

end of an experiment allows us to analyze and compare the population of cells in each layer. The 

cells remain viable after separation, and would be recovered for further analysis or continued 

culture. We are able to image the cells in each sheet of paper with a fluorescence scanner (which 

provides high-throughput, but low-resolution data; Fig. 1C) or a confocal microscope (which 

provides low-throughput, but high-resolution data; Fig. 1F). 

 Current in vitro studies of cellular response to changes in concentrations of oxygen rely on 

hypoxia chambers, which regulate the bulk concentration of oxygen to which a culture of cells is 

exposed. Furthermore, hypoxia chambers do not generating gradients of oxygen to study 

chemotaxis.  A well-defined gradient of oxygen can be formed in a microfluidic device 

containing cells, but these devices are predominantly used to study cellular viability, 

proliferation, and differentiation (7, 8, 24-28).  To our knowledge, in vitro studies of chemotaxis 

in the presence of a gradient of oxygen—particularly one generated by cellular metabolism—

have yet to be performed for mammalian cells.  The fact that such studies have not been 
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performed is due not to a disinterest in the role of oxygen in tumor migration, but to the limited 

utility of most microfluidic devices in the hands of cell biologists. 

We speculate that a paper-based assay may be more useful for cell culture than microfluidic 

devices for these three reasons: i) An invasion stack is easier to set up than most microfluidic 

assays. ii) A higher volume of statistically relevant data can be more easily generated in the 

invasion stacks than in most microfluidic devices. iii) Sub-populations of cells can be easily 

recovered from the layers of paper for further analysis (e.g, FACS, qPCR), while the recovery of 

subpopulations of cells from a microfluidic device can be difficult. 

The current, paper-based assay has two primary drawbacks: i) The migration of the cells 

cannot be tracked in real time, and thus tracking the migration of single cells is difficult. ii) The 

gradients formed in the stack are currently difficult to measure directly.  These limitations, 

however, can be overcome with further development, characterization, and engineering of the 

assay. 

Our findings that the migratory response of a population of cells within a gradient of oxygen 

correlates with its metastatic potential in vivo may have value for angiogenic-based therapies 

(38-40).  This correlation is in agreement with current literature and mathematical models, and 

suggests the invasion of cancer cells is driven largely by the metabolic needs of a tumor (4-6, 

41).  Furthermore, the versatility of this assay has the potential for investigating other important 

factors in metastasis, such as effects of gradients of cytokines, co-cultures of multiple types of 

cells, and invasion through extracellular matrices of varying composition.  We believe this 

versatility coupled with the ability to separate sub-populations of cells from the paper-based 

invasion assay may enable discovery of novel biomarkers and better testing of 3D invasion 

assays for drug screening (42). 
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Oxygen as a chemokine for mammalian cells is a largely unstudied field of biology. To our 

knowledge, only one other work experimentally evaluates the migration of mammalian cells in 

gradients of oxygen (29). Tung et al. used a microfluidic device that exposed A549 cells to 

gradients of oxygen ranging from 3.8% to 13.6%.  A549 cells in this device showed a 

chemotactic response that moved toward lower concentrations of oxygen. This result is 

contradictory to the behavior of A549 cells in our invasion stacks, which moved toward 

atmospheric levels of oxygen (i.e., 20%).  There are significant differences between these two 

migration assays that could account for the different migratory behavior of the A549 cells: i) 2D 

migration in the microfluidic device versus 3D invasion in the invasion stack, ii) autocrine 

factors are continuously removed from the microfluidic device, but maintained within the 

invasion stack, iii) the microfluidic device imposes a gradient of oxygen on the cells, but the 

invasion stack allows the metabolism of the cells to generate the gradient of oxygen as in done in 

vivo, iv) the density of cells in the microfluidic device (2000 cells/µl) is lower than the invasion 

stack (100,000 cells/µl).  The experimental differences in these systems are known to have 

significant effects on migratory behavior of cells and alter many downstream gene expression 

profiles (10, 43, 44).  Since the mechanism of how cells sense gradients of oxygen, and use that 

information to migrate toward a particular direction, is not well understood, the differences listed 

between these two systems may or may not account for the difference in behavior. We believe, 

however, that the discrepancy between these two studies should stimulate research intended to 

understand the mechanisms involved with chemotaxis of cells in gradients of oxygen and how 

they regulate behavior in vivo in both physiological and pathological environments.           
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Materials and Methods 

 The materials and methods used in this work are summarized here, and presented in detail 

in the Materials and Methods section of the Supporting Information.  Cell Culture. All lines of 

A549 cells were cultured at 37 °C and 5% CO2 in DMEM medium containing 10% fetal bovine 

serum and 1% PenStrep. Fabrication of Paper Layers. Layers of paper were fabricated using 

protocols detailed in (32). Statistical Analysis. Data are presented as mean ± SD. Student’s t test 

(two-tailed) was used to compare two groups (P < 0.05 was considered significant) unless 

otherwise indicated. 
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Figure 1. Paper-based invasion assay. A) Schematic of a single layer of wax-patterned paper (40 

µm thick) containing GFP-expressing A549-HGF-M cells suspended in a hydrogel (Layer 0) 
positioned between sheets of paper containing only hydrogel (Layers 0 + n for layers above the 

seeded layer, and 0 – n for layers below the seeded layer).  B) Schematic of all layers of paper 
stacked with a laser-cut transparency in an acrylic holder using two screws and nuts. C) Images 

from a fluorescent scanner of all layers of paper after 24 hours in culture.  An array of circular 
zones is visible due to the autofluorescence of the wax.  Within the circles, darker pixels 

correlate with a higher intensity of GFP (e.g., higher density of cells). Scale bar: 1 cm.  D) Image 
of layer 0 with red circles outlining cell-seeded zones and blue circles outlining blank zones, 

which are used to determine background intensity of the layer. E) Plot of the average intensity of 
GFP within each layer, normalized by the total intensity of GFP within all layers of the stack.  

Each layer was cultured separately overnight and then stacked for 24 hours before being 
destacked and imaged.  Error bars represent the standard deviation for 10 replicate zones within 

the same layer.  F) Confocal image of cells within layer 0: green is GFP (A549-HGF-M), blue is 
DAPI (nuclei). Fibers of the paper are visible due to their autofluorescence under ultraviolet 

irradiation. Scale bar: 50 µm      
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Figure 2. Invasiveness of different types of A549 cells in the paper-based invasion stack.  A-C) 
Cellular distribution of A549 (A), A549-HGF (B), and A549-HGF-M (C). Cells were initially 

seeded in layer 0 at 100,000 cells/zone, incubated overnight, stacked, and then cultured for 24 
hours before imaging.  Error bars represent the standard deviation for three separate invasion 

assays with a total of 30 replicate zones. * represents a p < 0.01.      
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Figure 3. Rapidly and slowly moving populations of A549-HGF-M cells are resolved with 

shorter durations of culture. A-C) Distribution of A549-HGF-M cells within the invasion assay 
with increasing periods of culture.  A549-HGF-M cells were cultured overnight prior to stacking 

(100,000 cells/zone).  D-F) Distribution of A549-HGF-M cells in the invasion assay after 24 
hours for a seeded density of 10 x 10

3
, 33 x 10

3
, or 100 x 10

3 
cells/zone.  Cells were cultured 

overnight prior to stacking. Error bars represent the standard deviation for either 10 or 20 
replicate zones. * represents a p < 0.01. 
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Figure 4. Oxygen is the primary chemoattractant within the invasion stack for A549-HGF-M 
cells. A-D) Schematic of the invasion stack with the seeded layer shown in green (positioned at 

the top, middle, or bottom of the stack), layers of matrigel shown in pink, layer of PDMS shown 
in blue (permeable to oxygen but not nutrients), and acrylic holder  shown in black (impermeable 

to oxygen and nutrients).  A) Cells were positioned at the top of the stack and nutrients and 
oxygen were available only from the top of the stack. B) Cells were positioned at the bottom of 

the stack and nutrients and oxygen were available only from the top of the stack.  C) Cells were 
positioned in the middle of the stack and nutrients and oxygen were available at both the top and 

bottom of the stack.  F) Cells were positioned in the middle of the stack, nutrients were available 
only from the top of the stack, and oxygen was available from both the top and bottom of the 

stack.  Error bars represent the standard deviation for 20 replicate zones. 
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Figure 5. Local environment dictates distribution of invading cells. A) Schematic of generating a 

sub-line of cells recovered from a given layer of a stack and reimplanted into the invasion assay.  
B-C) Distribution of A549-HGF cells recovered from layer 0 (B) and layer +4 (C) of the same 

invasion stack that was cultured for 24 hours with 100,000 cells/zone in the seeded layer.  Error 
bars represent the standard deviation for 20 replicate zones.    
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Materials and Methods 

 
Cells and Culture Reagents. We purchased A549 cells from the American Type Culture 

Collection. A549 cells engineered to constitutively express hepatocyte growth factor (HGF) were 

transduced with a HGF retrovirus using polybrene (8 µg/mL), and clones prepared from single 

cells selected with neomycin.  The retroviral stock, a pLNCX2 plasmid (neomycin selection) 

expressing human HGF under the CMV promoter were harvested from 293T cell supernatants. A 

second retroviral stock, a pLNCX2 plasmid (puromycin selection) expressing luciferase under 

the CMV promoter was also harvested from 293T cells.  We confirmed the clones expressed 

HGF with an ELISA assay (Quantikine, R&D Systems).  A high expressing clone was 

transduced with the luciferase retrovirus and population selected with puromycin. Luciferase 

expression was ascertained using SteadyGlo (Promega).  All cells were cultured at 37 °C and 5% 

CO2 in DMEM medium containing 10% fetal bovine serum and 1% PenStrep.  

 

Preparation of Paper Layers. We used a Xerox ColorQube 8870 printer to print wax 

patterns onto one side of a sheet of Whatman 105 lens paper. The layers of paper were then 

placed on a layer of aluminum foil, and baked at 150 
o
C for 10-15 seconds; this short baking 

period allowed the wax to melt throughout the thickness of the paper.  We cut the wax-patterned 

scaffolds from the layer of lens paper with a Versa Laser-Universal Laser VL-300 laser cutter. 

Each scaffold contained 20 hydrophilic zones surrounded by hydrophobic wax (Fig. 1). Each 

scaffold was sterilized in a bath of ethanol for approximately 30 min and then air-dried in a 

laminar flow hood under UV irradiation. 

 
Preparation of the Invasion Stacks. Cultures of A549 cells were maintained in tissue culture 

flasks. Prior to preparing the invasion assay, we: i) detached the cells from the tissue culture 
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flask (Trypsin-EDTA, 5 minute incubation at 37 
o
C), ii) washed the cells in the appropriate, 

serum-containing medium, iii) pelleted the cells (1000 x g, five minutes) and removed the 

medium, and iv) resuspended the cells in Matrigel to a final concentration of 10
8
 cells/mL (the 

cells and Matrigel were kept on ice to prevent gelation).  We next pipetted the suspension of cells 

directly onto the hydrophilic zones of the layer of paper (1 L/zone for a final concentration of 

100,000 cells/zone), and placed the “seeded layers” in a petri dish of pre-warmed culture 

medium (37 
o
C). For each seeded layer, we prepared eight “invaded layers” by pipetting 1 L of 

Matrigel/zone. The seeded and invaded layers contained the same 20-zone pattern, which 

consisted of 10 zones in which we added either Matrigel (invaded layers) or cells suspended in 

Matrigel (the seeded layer). The remaining 10 zones were “blank” and contained neither cells 

nor Matrigel.  The blank zones were used to account for autofluorescence of each layer of paper, 

and background fluorescence arising from the staining protocols described below.  

Prior to assembling the invasion stacks, each layer was placed in a petri dish containing 

DMEM medium and cultured overnight at 37 
o
C in an environment of 5% CO2.  The seeded 

layers and the invaded layers were incubated in separate petri dishes.  The layers of paper were 

stacked in an acrylic holder (Fig. 1), which was machined specifically for the layers of lens 

paper.  The seeded layer was placed in the middle of the invasion stack, with an equal number of 

invaded layers above and below the seeded layer. Once assembled in the acrylic holder, the 

invasion assay was placed in DMEM medium and cultured at 37 
o
C and in an environment of 5% 

CO2 for a desired period of time; the stack was then disassembled and each layer of paper 

analyzed (protocols described below in detail).  
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Analysis of the Invasion Stacks.  We analyzed the cells in each layer of paper of the 

destacked invasion stack with fluorescence images (Typhoon FLA 9000 laser scanner, GE) or 

confocal microscopy (Zeiss LSM 710 upright microscope). 

Viability staining protocol. After destacking, each layer of the invasion stack was placed in a 

6 well plate containing Dulbecco’s phosphate-buffered saline (DPBS). The layers were washed 

two times with DPBS, and then fluorescently stained with a solution of calcein-AM (Invitrogen; 

0.4 g/mL in DPBS).  We incubated the layers in the calcein solution for 20 minutes at 37 
o
C in 

an environment of 5% CO2, and then washed each layer with DPBS twice before imaging in the 

Typhoon laser scanner: 488 nm excitation/band pass blue 1 filter (530 nm), 50-micron resolution 

images. 

 

Recovery Protocol. To recover the cells from a layer of lens paper we placed each layer in a 

50 mL Falcon tube containing 5 mL of Accumax (Innovative Cell Technologies) and incubated 

the solution at 37 
o
C for 30 minutes on a shake table. The layers of paper were removed from the 

tubes, and the cells were washed with DMEM medium, centrifuged at 1,000 rpm for 5 minutes, 

and re-suspended with media to the desired concentration (e.g., 1,000 cells/L). 

To determine the percentage of cells recovered from the above process, we first stained the 

cells will calcein-AM prior to recovery, and compared the fluorescence intensity of each zone of 

a layer of paper before and after recovery.  To determine the viability of the recovered cells, we 

plated approximately 500 cells in a each well of a 6-well plate, and determined the number of 

live cells after a 2-, 3-, 4-, and 5-day incubation with a CellTiter-Glo Luminescent Cell Viability 

Assay (Promega) according to the manufacturer’s directions.  
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Inoculation of Mice with Tumor Cell Lines. All animal studies were approved by the 

Institutional Animal Care and Use Committee in accordance with the guidelines set forth by the 

U.S. Public Health Service Policy on Humane Care and Use of Laboratory Animals.  Mice were 

housed under standard conditions in approved facilities with 12 hour light/dark cycles and given 

food and water ad libitum.  Male athymic Nu/Nu nude mice were purchased from Charles River 

Laboratories.  Prior to inoculation, A549, A549-HGF, or A549-HGF-M cells were resuspended 

at 2x10
7
 cells/ml in a 1:1 mixture of phosphate buffered saline:Matrigel (BD Biosciences).  All 

three cell lines expressed GFP.  Each mouse was injected in the right flank with 0.1 ml of the cell 

suspension.   

 

Assessment of Metastasis in vivo. On Day 22 (Fig. S2), post inoculation of tumor cells, some 

mice (n=10) were euthanized by asphyxiation with carbon dioxide and the number of lung 

metastases quantified using a Leica MZ16F Stereomicroscope with a green fluorescent protein 

filter.  The lungs were excised and placed under the microscope where the number of metastases 

in a single plane of the lung was quantified by eye.  An additional cohort of mice (n=12-15) were 

euthanized when the tumor volume reached approximately 1,000 mm
3
, at which time the number 

of lung metastases was also enumerated. Tumor volumes were measured with calipers twice per 

week. 

 

 

 



Page 34 of 35 

Supplemental Figures: 

A                                                           B  

 
 

Supplemental Figure 1. A-B) A549-HGF-M cellsed in layer +4 after 24 hours within the 

invasion stack. All cells expressed GFP. (A) Single confocal scan of layer +4. (B) Maximum 

intensity projection of total thickness of layer +4 . Green is GFP, Blue is DAPI.  

 

 



Page 35 of 35 

 
 
Supplemental Figure 2. A-C) Image of a mouse lung, 23 days post-implantation with A549 (A), 

A549-HGF (B), and A549-HGF-M (C) cells implanted subcutaneously on the hind flank of the 

mouse.  All three cell lines expressed GFP.  D) Image of mouse lung when the A549 xenograft 

tumor reached 1,000 mm
3
.  E) Plot of number of lung metastases 23 days post-implantation of 

A549, A549-HGF, and A549-HGF-M cells.  F) Plot of number of metastases to the lung when 

the primary tumor reached at least 1000 mm
3
 for A549, A549-HGF, and A549-HGF-M cells. 


