104 research outputs found

    Molecular magnetic resonance imaging (MRI) of inflamed myocardium using ferucarbotran in patients with acute myocardial infarction

    Get PDF
    Introduction: Superparamagnetic iron oxide nanoparticle (SPIO)-based molecular imaging agents targeting macrophages have been developed and successfully applied in animal models of myocardial infarction

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Building in China - Study trip of the faculty of Civil Engineering of the HTWG Konstanz 2008

    Get PDF
    Im März 2008 führte die Fakultät Bauingenieurwesen der HTWG Konstanz eine studentische Exkursion nach China durch. Auf dem Programm standen interessante Baustellen Shanghai, Nanjing, Zhenjiang und Beijing sowie der Besuch von Hochschulen. Der Exkursionsbericht beschreibt die besuchten Bauvorhaben und gibt persönliche Eindrücke der Exkursionsteilnehmer wieder.In March 2008 the faculty of civil engineering of the University of Applied Sciences Konstanz, Germany, conducted a study trip for students of civil engineering to China. Construction sites and universities in Shanghai, Nanjing, Zhenjiang and Beijing have been visited. The report describes the places seen and reflects the personal impressions of the participants

    A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease

    Get PDF
    Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the alpha-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD. Mitochondrial dysfunction is a contributing factor in Parkinson's disease. Here the authors carry out a multilayered omics analysis of Parkinson's disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by alpha-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge. The technological challenge of GERDA is to operate in a "background-free" regime in the region of interest (ROI) after analysis cuts for the full 100\,kg\cdotyr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around QββQ_{\beta\beta} for the 0νββ0\nu\beta\beta search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ2\nu\beta\beta) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.040.85+0.7810316.04^{+0.78}_{-0.85} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched BEGe data set and 14.680.52+0.4710314.68^{+0.47}_{-0.52} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components
    corecore