3,024 research outputs found

    The potential (iz)^m generates real eigenvalues only, under symmetric rapid decay conditions

    Get PDF
    We consider the eigenvalue problems -u"(z) +/- (iz)^m u(z) = lambda u(z), m >= 3, under every rapid decay boundary condition that is symmetric with respect to the imaginary axis in the complex z-plane. We prove that the eigenvalues lambda are all positive real.Comment: 23 pages and 1 figur

    Equicontinuous Families of Markov Operators in View of Asymptotic Stability

    Get PDF
    Relation between equicontinuity, the so called e property and stability of Markov operators is studied. In particular, it is shown that any asymptotically stable Markov operator with an invariant measure such that the interior of its support is nonempty satisfies the e property

    Law of the Iterated Logarithm for some Markov operators

    Get PDF
    The Law of the Iterated Logarithm for some Markov operators, which converge exponentially to the invariant measure, is established. The operators correspond to iterated function systems which, for example, may be used to generalize the cell cycle model examined by A. Lasota and M.C. Mackey, J. Math. Biol. (1999).Comment: 23 page

    Modelling with measures: Approximation of a mass-emitting object by a point source

    Get PDF
    We consider a linear diffusion equation on Ω:=R2ΩOˉ\Omega:=\mathbb{R}^2\setminus\bar{\Omega_\mathcal{O}}, where ΩO\Omega_\mathcal{O} is a bounded domain. The time-dependent flux on the boundary Γ:=ΩO\Gamma:=\partial\Omega_\mathcal{O} is prescribed. The aim of the paper is to approximate the dynamics by the solution of the diffusion equation on the whole of R2\mathbb{R}^2 with a measure-valued point source in the origin and provide estimates for the quality of approximation. For all time tt, we derive an L2([0,t];L2(Γ))L^2([0,t];L^2(\Gamma))-bound on the difference in flux on the boundary. Moreover, we derive for all t>0t>0 an L2(Ω)L^2(\Omega)-bound and an L2([0,t];H1(Ω))L^2([0,t];H^1(\Omega))-bound for the difference of the solutions to the two models

    Differentiability in perturbation parameter of measure solutions to perturbed transport equation

    Get PDF
    We consider a linear perturbation in the velocity field of the transport equation. We investigate solutions in the space of bounded Radon measures and show that they are differentiable with respect to the perturbation parameter in a proper Banach space, which is predual to the H\"older space C1+α(Rd)\mathcal{C}^{1+\alpha}(\mathbb{R}^d). This result on differentiability is necessary for application in optimal control theory, which we also discuss

    Sensing of Fluctuating Nanoscale Magnetic Fields Using NV Centres in Diamond

    Full text link
    New magnetometry techniques based on Nitrogen-Vacancy (NV) defects in diamond allow for the imaging of static (DC) and oscillatory (AC) nanoscopic magnetic systems. However, these techniques require accurate knowledge and control of the sample dynamics, and are thus limited in their ability to image fields arising from rapidly fluctuating (FC) environments. We show here that FC fields place restrictions on the DC field sensitivity of an NV qubit magnetometer, and that by probing the dephasing rate of the qubit in a magnetic FC environment, we are able to measure fluctuation rates and RMS field strengths that would be otherwise inaccessible with the use of DC and AC magnetometry techniques. FC sensitivities are shown to be comparable to those of AC fields, whilst requiring no additional experimental overheads or control over the sample.Comment: 5 pages, 4 figure

    Unidirectional hopping transport of interacting particles on a finite chain

    Full text link
    Particle transport through an open, discrete 1-D channel against a mechanical or chemical bias is analyzed within a master equation approach. The channel, externally driven by time dependent site energies, allows multiple occupation due to the coupling to reservoirs. Performance criteria and optimization of active transport in a two-site channel are discussed as a function of reservoir chemical potentials, the load potential, interparticle interaction strength, driving mode and driving period. Our results, derived from exact rate equations, are used in addition to test a previously developed time-dependent density functional theory, suggesting a wider applicability of that method in investigations of many particle systems far from equilibrium.Comment: 33 pages, 8 figure

    More and more students, especially those from middle-income households, are using private tutoring

    Full text link
    Private tutoring is playing an increasingly significant role in the education of many teenagers and children: In 2013, a total of 18 percent of students at the secondary level (approximately ages 10-17) worked with paid tutors; among students at the primary level (approximately ages 6-10), this figure stood at six percent. In the period between 2009 and 2013, an average of 47 percent of 17-year-old respondents indicated that they had received tutoring at least once in the course of their school careers-roughly 20 percentage points more than what had been reported around 15 years earlier, as the present calculations show. Although households with above-average incomes engaged the services of paid tutors the most frequently of any group, discrepancies in usage among the various socioeconomic groups have started to fade: An increasing number of students from families with below-average incomes are also working with tutors, though this share remains lower than those of other groups

    Kinetics and mechanism of proton transport across membrane nanopores

    Full text link
    We use computer simulations to study the kinetics and mechanism of proton passage through a narrow-pore carbon-nanotube membrane separating reservoirs of liquid water. Free energy and rate constant calculations show that protons move across the membrane diffusively in single-file chains of hydrogen-bonded water molecules. Proton passage through the membrane is opposed by a high barrier along the effective potential, reflecting the large electrostatic penalty for desolvation and reminiscent of charge exclusion in biological water channels. At neutral pH, we estimate a translocation rate of about 1 proton per hour and tube.Comment: 4 pages, 4 figure
    corecore