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The Law of the Iterated Logarithm for some Markov operators, which converge exponen-

tially to the invariant measure, is established. The operators correspond to iterated function

systems which, for example, may be used to generalize the cell cycle model examined by [12].

I. INTRODUCTION

We consider some Markov operators acting on Borel measures defined on Polish spaces and

corresponding to iterated function systems, which may describe e.g. the process of cell division.

One of the first cell cycle models was proposed in 1988 by J.J. Tyson and K.B. Hannsgen [20],

while the full description of the research was given by A. Murray and T. Hunt [14]. In 1999

an interesting result was published by A. Lasota and M.C. Mackey [12]. Their research was further

developed by S. Hille and co-authors who proposed the generalisation of the model considered in [12]

and analyzed it in terms of its ergodic properties (see [9], [10]), i.e. the existence of an invariant

measure was established in [9], while asymptotic stability, exponential rate of convergence to the

unique invariant measure in the Fourtet-Mourier norm and the Central Limit Theorem (CLT) were

proven in [10].

The aim of this paper is to verify the Law of the Iterated Logarithm (LIL), which completes

the ergodic description of the generalised cell cycle model. Note that the results obtained in [10],

i.e. the exponential rate of convergence (see Theorem 1, [10]), are necessary to prove the LIL.

Moreover, the variance of the normal distribution present in the thesis of the CTG (see Theorem 2,

[10]) is consistent with the one given in the main theorem of this paper - Theorem 2 (see Remark

∗T.S. was supported by the National Science Centre of Poland, grant number DEC-2012/07/B/ST1/03320
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1 and the proof below).

The functional form of LIL, known now as the Strassen invariant principle, was defined by

V. Strassen in 1964 [17]. The results for martingales were further investigated in many papers (see

e.g. [8], [6] or [18]). To obtain the LIL for a wider class of stochastic processes (i.e. for Markov

processes with spectral gap in the Wasserstein metric) the martingale method due to C.C. Heyde

and D.J. Scott (Theorem 1, [8]) was used and combined with the Birkhoff individual ergodic theorem

(see [3] or [11]).

In this paper, however, the key role is played by the coupling measure whose construction is

motivated by M. Hairer [5]. M. Hairer proposed to build the coupling measure on the whole trajec-

tories and use it to prove the exponential rate of convergence for some class of Markov operators

(coupling measure is constructed in the same manner e.g. in [19] or [22]). In [10] we have observed

that such a coupling measure is extremely useful in the proof of the CLT. This paper shows that,

in addition, it is significant to verify the LIL (see Theorem 2).

The greatest difficulty was to prove that relevant functions are continuous. Some properties of

the carefully constructed coupling measure appeared to be important in overcoming this difficulty.

The organisation of the paper goes as follows. Section 2 introduces basic notations and defini-

tions. Most of them are adapted from [1], [2], [16], [21] or [23]. Assumptions and properties of the

model are stated in Section 3. We do not repeat neither the construction of the coupling measure

(described in details in Sections 5-7, [10]), nor the proofs given in [10]. We restrict ourselves to re-

calling these facts which are necessary to prove the LIL. In the last section we finally give a detailed

proof of the LIL.

II. NOTATION AND BASIC DEFINITIONS

Let (X, ̺) be a Polish space. We denote by BX the family of all Borel subsets of X. Let B(X)

be the space of all bounded and measurable functions f : X → R with the supremum norm and

write C(X) for its subspace of all bounded and continuous functions with the supremum norm.

Additionally, we consider the space B̃(X) of functions f : X → R which are measurable and

bounded from below.

We denote by M(X) the family of all Borel measures on X and by Mfin(X) and M1(X) its

subfamilies such that µ(X) < ∞ and µ(X) = 1, respectively. Elements of Mfin(X) which satisfy
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µ(X) ≤ 1 are called sub-probability measures. To simplify notation, we write

〈f, µ〉 =
∫

X
f(x)µ(dx) for f : X → R, µ ∈M(X).

An operator P :Mfin(X) →Mfin(X) is called a Markov operator if

1. P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0, µ1, µ2 ∈Mfin(X);

2. Pµ(X) = µ(X) for µ ∈Mfin(X).

Markov operator P for which there exists a linear operator U : B(X) → B(X) such that

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈Mfin(X)

is called a regular operator. Operator U : B(X) → B(X) is then called a dual operator for

P and it can be easily extended to B̃(X). We say that a regular Markov operator is Feller if

U(C(X)) ⊂ C(X). Every Markov operator P may be extended to the space of signed measures on

X denoted by Msig(X) = {µ1 − µ2 : µ1, µ2 ∈ Mfin(X)}. By ‖ · ‖ we denote the total variation

norm in Msig(X), i.e.

‖µ‖ = µ+(X) + µ−(X) for µ ∈Msig(X),

where µ+ and µ− come from the Hahn-Jordan decomposition of µ (see [7]). In particular, if µ is

non-negative, ‖µ‖ is the total mass of µ. For fixed x̄ ∈ X, let us introduce the function ̺x̄ : X → R

describing the distance from the point x̄ , i.e. ̺x̄(x) = ̺(x̄, x) for x ∈ X. For fixed x̄ ∈ X and

r > 0, we also consider the space M r
1 (X) of all probability measures with finite r-th moment, i.e.,

M r
1 (X) = {µ ∈ M1(X) :

∫

X ̺
r
x̄(x)µ(dx) < ∞}. The family is independent of choice of x̄ ∈ X. We

call µ∗ ∈ Mfin(X) an invariant measure of P if Pµ∗ = µ∗. We define the support of µ ∈ Mfin(X)

by

supp µ = {x ∈ X : µ(B(x, r)) > 0 for all r > 0},

where B(x, r) is an open ball in X with center at x ∈ X and radius r > 0. By B̄(x, r) we denote

a closed ball with center at x ∈ X and radius r > 0.

In Msig(X), we introduce the Fortet-Mourier norm

‖µ‖L = sup
f∈L

|〈f, µ〉|,

where L = {f ∈ C(X) : |f(x)− f(y)| ≤ ̺(x, y), |f(x)| ≤ 1 for x, y ∈ X}. The space M1(X) with

metric ‖µ1 − µ2‖L is complete (see [4], [16] or [21]).



4

III. ASSUMPTIONS AND PROPERTIES OF THE MODEL

A. Assumptions

Let H be a separable Banach space. We may think of a closed subset of H as a Polish space

(X, ̺), where the distance ρ is induced by the norm in H. We also condider a probability space

(Ω,F ,Prob). Let ε∗ < ∞ be given. We fix ε ∈ [0, ε∗] and T < ∞. We consider a stochastically

perturbed dynamical system of the form

xn+1 = S(xn, tn+1) +Hn+1 for n ≥ 0,

where (Hn)n≥1 is a family of independent random vectors with values in H and with the same

distribution νε, which is independent of S(xn, tn+1) and its support stays in B(0, ε). We make the

following assumptions.

(I) We consider a sequence (tn)n≥1 of independent random variables defined on (Ω,F ,Prob) with

values in [0, T ]. Distribution of tn+1 conditional on xn = x is given by

Prob(tn+1 < t|xn = x) =

∫ t

0
p(x, u)du, 0 ≤ t ≤ T,

where p : X × [0, T ] → [0,∞) is a measurable and non-negative function. In addition, p is

normalized, i.e.
∫ T
0 p(x, u)du = 1 for x ∈ X.

(II) Let S : X × [0, T ] → X be a continuous function which satisfies the Lipschitz type inequality

̺(S(x, t), S(y, t)) ≤ λ(x, t)̺(x, y) for x, y ∈ X, t ∈ [0, T ],

where λ : X × [0, T ] → [0,∞) is a Borel measurable function such that

a2+δ := sup
x∈X

∫ T

0
λ2+δ(x, t)p(x, t)dt < 1. (1)

Note that, due to the Hölder inequality, we also know that

a1 := sup
x∈X

∫ T

0
λ(x, t)p(x, t)dt ≤ a

1/(2+δ)
2+δ < 1, a2 := sup

x∈X

∫ T

0
λ2(x, t)p(x, t)dt ≤ a

2/(2+δ)
2+δ < 1.

(III) We require supt∈[0,T ] ̺x̄

(

S(x̄, t)
)

<∞ for some x̄ ∈ X and so we can set

c := sup
t∈[0,T ]

̺x̄(S(x̄, t)) + ε∗ <∞. (2)
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(IV) We assume that p satisfies the Dini condition

∫ T

0
|p(x, t)− p(y, t)|dt ≤ ω(̺(x, y)) for x, y ∈ X,

where the function ω : R+ → R+ is non-decreasing, concave and such that ω(0) = 0, as well as

∫ σ

0

ω(t)

t
dt < +∞ for some σ > 0.

We can easily check that if ζ < 1, we have

ϕ(t) =
∞
∑

n=1

ω(ζnt) < +∞ for every t ≥ 0.

Moreover, limt→0 ϕ(t) = 0.

(V) Function p is bounded. We set M1 := infx∈X,t∈(0,T ] p(x, t), M2 := supx∈X,t∈[0,T ] p(x, t) and

require M1 > 0.

(VI) Let νε be a Borel measure on H such that its support is in B̄(0, ε). We set

νεx(·) = νε(· − x) for every x ∈ X.

We assume that S(x, t) + h ∈ X for every t ∈ [0, T ], x ∈ X and h from the support of νε.

The Markov chain is generated by the transition function Πε : X ×BX → [0, 1] of the form

Πε(x,A) :=

∫ T

0
p(x, t)νεS(x,t)(A)dt.

Note that the function Πε(·, A) : X → R is measurable for fixed A ∈ BX and Πε(x, ·) : BX → [0, 1]

is a probability measure for x ∈ X. Hence, there exists a unique regular Markov operator Pε :

M1(X) →M1(X) which is defined as follows

Pεµ(A) :=

∫

X
Πε(x,A)µ(dx)

and its dual operator Uε : BX → BX is given by

Uεf(x) :=

∫

X
f(z)Πε(x, dz)

(see Section 1.1, [23]).
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B. Properties of the model

Let us introduce an auxiliary model. If we fix a sequence of constants (hn)n≥1 ⊂ H, hn ∈ B̄(0, ε),

and introduce functions Thi
(x, t) := S(x, t) + hi, i ≥ 1, we may consider a stochastically perturbed

dynamical system

x̃n+1 = Thn+1
(x̃n, tn+1) := S(x̃n, tn+1) + hn+1 for n ≥ 0.

Further, we define one-dimensional distributions

Π0(x,A) = δx(A)

Π1
hi
(x,A) =

∫ T

0
1A(Thi

(x, t))p(x, t)dt

. . .

Πn
h1,...,hn

(x,A) =

∫

X
Π1

hn
(y,A)Πn−1

h1,...,hn−1
(x, dy),

(3)

where A ∈ BX and δx is a Dirac measure at x ∈ X. We easily obtain multidimensional distributions.

Let x ∈ X and n ≥ 0. If we assume that Π1,...,n
h1,...,hn

(x, ·) is a measure on Xn, generated by a sequence

(Π1
hi
(x, ·))ni=1, then we can define the measure Π1,...,n+1

h1,...,hn+1
(x, ·) on Xn+1 as the only measure which

satisfies the condition

Π1,...,n+1
h1,...,hn+1

(x,A×B) =

∫

A
Π1

hn+1
(zn, B)Π1,...,n

h1,...,hn
(x, dz) for z = (z1, . . . , zn), A ∈ BXn , B ∈ BX .

(4)

Finally, we obtain a family {Π∞
h1,h2,...

(x, ·) : x ∈ X} of measures on X∞. Note that the measures

Π1
h1
(x, ·), . . . ,Πn

h1,...,hn
(x, ·), given by (3), are marginal distributions of Π∞

h1,h2,...
(x, ·). The existence

of measure Π∞
h1,h2,...

(x, ·) is established by the Kolmogorov theorem. More precisely, for every x ∈ X,

there exists some probability space on which we can define a stochastic process ξx with distribution

φξx such that

φξx(B) = Prob ({ω ∈ Ω : ξx(ω) ∈ B}) = Π∞
h1,h2,...(x,B) for B ∈ BX∞ .

Therefore, Π∞
h1,h2,...

(x, ·) is the distribution of the non-homogeneous Markov chain ξx on X∞ with

sequence of transition probability functions (Π1
hi
)i∈N and φξx

0
= δx. This construction was adapted

from [5].

Note that, for every n ∈ N and arbitrary A ∈ BX , Πn
h1,...,hn

(·, A) : X → R is measurable by

definition. Furthermore, Πn
h1,...,hn

(x, ·) is a probability measure for x ∈ X. Again, thanks to these



7

properties (see Section 1.1, [23]), there exists a unique regular Markov operator Pn
h1,...,hn

, for which

Πn
h1,...,hn

is a transition probability function, and it is given by the formula

(Pn
h1,...,hn

µ)(A) =

∫

X
Πn

h1,...,hn
(x,A)µ(dx) for A ∈ BX , µ ∈M1(X).

Moreover, its dual operator Un
h1,...,hn

is defined as follows

(Un
h1...,hn

f)(x) =

∫

X
f(y)Πn

h1,...,hn
(x, dy) for f ∈ B(X).

We refer the reader to [10], where a lot of useful properties of Pn
h1,...,hn

was established. Firstly,

Pn
h1,...,hn

is a Feller operator (see Remark 1, [10] ). Secondly, if µ ∈ M i
1(X), then also Pn

h1,...,hn
µ ∈

M i
1(X) for i ∈ {1, 2}, which is proven in Lemmas 1 and 5 (see [10]). All estimates in proofs of these

lemmas are independent of (hn)n≥1. This is crucial, because it makes all the facts valid for Pn
ε ,

which follows from the relation

Pn
ε µ(·) =

∫

X

∫

B̄(0,ε)
. . .

∫

B̄(0,ε)
Πn

h1,...,hn
(x, ·)νε(dh1) . . . νε(dhn)µ(dx). (5)

Hence, Pε has the Feller property and, if µ ∈ M i
1(X), then also Pεµ ∈ M i

1(X) for i ∈ {1, 2}.
Moreover, the dual operator Un

ε to Pn
ε is of the form

(Un
ε f)(x) =

∫

B̄(0,ε)
. . .

∫

B̄(0,ε)

∫

X
f(y)Πn

h1,...,hn
(x, dy)νε(dh1) . . . ν

ε(dhn) for f ∈ B(X)

and it may be extended to B̃(X).

In Section 7 of [10] we adapt the construction introduced in [5] and, for some fixed x0, y0 ∈ X

and initial distribution δ(x0,y0,1), we build an appropriate coupling measure Ĉ∞
h1,h2,...

((x0, y0, 1), ·)
on (X2 × {0, 1})∞, which has the following properties

(a) Π∗
(X2)∞Ĉ

∞
h1,h2,...

((x0, y0, 1), ·) = C∞
h1,h2,...

((x0, y0), ·), where Π∗
(X2)∞ : (X2×{0, 1})∞ → (X2)∞

is the projection on (X2)∞,

(b) C∞
h1,h2,...

((x0, y0), A × X) = Π∞
h1,h2,...

(x0, A) and C∞
h1,h2,...

((x0, y0),X × B) = Π∞
h1,h2,...

(y0, B)

for A,B ∈ ⊗∞
i=1BX ,

(c) the marginals Cn
h1,...,hn

((x0, y0), ·) of C∞
h1,h2,...

((x0, y0), ·) are coupling measures on X2, i.e.

they couple measures Πn
h1,...,hn

(x0, ·), Πn
h1,...,hn

(y0, ·), given by (3),

(d) marginal coupling measures are related by the condition

Cn
h1,...,hn

((x0, y0), ·) =
∫

X
C1
hn
((z1, z2), ·)Cn−1

h1,...,hn−1
((x0, y0), dz1 × dz2), (6)

which follows from the construction of the coupling measure on the whole trajectories (see

Section 7, [10]).
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Let g ∈ B(X) be a Lipschitz continuous function with constant Lg > 0. Then, it follows from

Lemma 4 and Remark 2 [10] that there exist q ∈ (0, 1) and C > 0 such that

∫

X2

|g(u) − g(v)|(Π∗
X2Π

∗
nĈ

∞
h1,h2...((x, y, 1), ·))(du × dv) ≤ GqnC(1 + ̺x̄(x) + ̺x̄(y)), x, y ∈ X,n ∈ N,

(7)

where Π∗
n : (X2 × {0, 1})∞ → X2 × {0, 1} is the projection on the n-th component, Π∗

X2 : X2 ×
{0, 1} → X2 is the projection on X2 and G := max{Lg, supx∈X |g(x)|}. The above inequality is

crucial in the proofs of the exponential rate of convergence and the CLT (see Theorems 1 and 2, [10]).

Let us introduce some additional notation. Let (xn)n≥0 be a Markov chain. For a given proba-

bility measure µ ∈Mfin(X) and a Borel event B ∈ ⊗∞
i=1BX , we write

Probµ(B) :=

∫

X
Prob((x0, x1, . . .) ∈ B|x0 = x)µ(dx).

Moreover,

Probµ(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An)

=

∫

A0

∫

A1

. . .

∫

An−1

Πε(sn−1, An)Πε(sn−1, dsn−1) . . .Πε(s0, ds1)µ(ds0)

for n ≥ 0 and A0, . . . , An ∈ BX (compare with Theorem 3.4.1, [15]). The respective expectation is

denoted by Eµ. For µ = δx, we just write Probx and Ex.

Lemma 1. Let a1, a2, a2+δ be given as in Assumption (II) and let c be given as in Assumption (III).

If µ ∈M j
1 (X), then also Pn

ε µ ∈M j
1 (X) for n ≥ 1 and j ∈ {1, 2, 2 + δ}, i.e.

sup
n≥0

Eµ

(

̺jx̄(xn)
)

= sup
n≥0

∫

X
̺jx̄(x)P

n
ε µ(dx) <∞,

which in stationary case means that ̺jx̄ ∈ L1(µ∗) for j ∈ {1, 2, 2 + δ}.

Proof. Let µ ∈M j
1 (X) for j ∈ {1, 2, 2 + δ} and let h ∈ B̄(0, ε). Note that

(〈

̺jx̄, Phµ
〉)1/j

=

(∫

X

∫

X
̺jx̄(y)Πh(x, dy)µ(dx)

)1/j

=

(∫

X

∫ T

0
̺jx̄(Th(x, t))p(x, t) dt µ(dx)

)1/j

≤ ‖̺x̄ ◦ Th‖Lj(ς),

where ‖·‖Lj (ς) is the norm in the space Lj(ς) such that ‖f‖Lj(ς) =
∣

∣

〈

f j, ς
〉∣

∣

1/j
for f ∈ B̃(X× [0, T ])

and ς ∈ Mfin(X × [0, T ]) given by ς(A) :=
∫

X×[0,T ] 1A((x, t))p(x, t) dt µ(dx) for A ∈ BX ⊗ B[0,T ].

By Assumptions (I) and (II) we obtain

(̺x̄ ◦ Th)(x, t) = ̺(Th(x, t), x̄) ≤ ̺(Th(x, t), Th(x̄, t)) + ̺(Th(x̄, t), x̄) ≤ λ(x, t)̺x̄(x) + c
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and therefore

‖̺x̄ ◦ Th‖Lj(ς) ≤
∣

∣

∣

∣

∣

∫

X×[0,T ]
λj(x, t)̺jx̄(x)p(x, t) dt µ(dx)

∣

∣

∣

∣

∣

1/j

+ c ≤
∣

∣

∣aj

〈

̺jx̄, µ
〉∣

∣

∣

1/j
+ c,

which finally gives us

〈

̺jx̄, P
n
h1,...,hn

µ
〉

≤
(

a
1/j
j

∣

∣

∣

〈

̺jx̄, P
n−1
h1,...,hn−1

µ
〉∣

∣

∣

1/j
+ c

)j

≤
(

a
2/j
j

∣

∣

∣

〈

̺jx̄, P
n−2
h1,...,hn−2

µ
〉∣

∣

∣

1/j
+ c

(

1 + a
1/j
j

)

)j

≤ . . . ≤
(

a
n/j
j

∣

∣

∣

〈

̺jx̄, µ
〉∣

∣

∣

1/j
+ c
(

1− a
1/j
j

)−1
)j

,

where a
1/j
j < 1, c < ∞ by assumption and the estimations are independent of (hi)i≥1. Hence, we

obtain

〈

̺jx̄, P
n
ε µ
〉

≤
(

a
n/j
j

∣

∣

∣

〈

̺jx̄, µ
〉∣

∣

∣

1/j
+ c
(

1− a
1/j
j

)−1
)j

<∞, (8)

which completes the proof.

IV. THE LAW OF THE ITERATED LOGARITHM APPLIED TO MARKOV CHAINS

A. A martingale result

We begin with presenting a classical result established in [8]. Let (Mn)n≥0, defined on

(Ω,F ,Prob), be a martingale with respect to (Fn)n≥0, where F0 = {Ω, ∅} and Fn is the σ-field

generated by M1,M2, . . . ,Mn for n > 0. We call (Fn)n≥0 the natural filtration of (Mn)n≥0. Let

us define (Zn)n≥0 such that Z0 = M0 = 0 Prob-a.s. and Zn = Mn −Mn−1 for n ≥ 1. Further, let

s2n := EM2
n <∞.

We consider the metric space (C, ˜̺) of all real-valued continuous functions on [0, 1] with

˜̺(f1, f2) = sup
t∈[0,1]

|f1(t)− f2(t)| for f1, f2 ∈ C.

Then, we define the set K of all absolutely continuous functions f ∈ C such that f(0) = 0 and
∫ 1
0 (f

′(t))2dt ≤ 1. The real function F on [0,∞) is given by F (s) = sup{n : s2n ≤ s}, while

the sequence of real random functions (ηn)n≥1 on [0, 1] is of the form

ηn(t) =
Mk + (s2nt− s2k)(s

2
k+1 − s2k)

−1Zk+1
√

2s2n log log s
2
n

for n > F (e), where 1 ≤ k ≤ n− 1, s2k ≤ s2nt ≤ s2k+1. We put ηn(t) = 0 for n ≤ F (e).
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Theorem 2 (Theorem 1, [8]). If s2n → ∞ and the following conditions are fulfilled

∞
∑

n=1

s−4
n E

(

Z4
n1{|Zn|<γsn}

)

<∞ for some γ > 0, (9)

∞
∑

n=1

s−1
n E

(

|Zn|1{|Zn|≥ϑsn}

)

<∞ for all ϑ > 0, (10)

s−2
n

n
∑

k=1

Z2
k → 1 Prob-a.s., as n→ ∞, (11)

then (ηn)n>F (e) is relatively compact in C and the set of its limit points coincides with K.

B. Application to the model

We consider the model initially introduced in [9] and so Assumptions (I)-(VI) are fulfilled. Let

us consider Markov chains (xn)n≥0, (yn)n≥0 with state space X, transition probability function Πε

and initial distributions µ, ν ∈ M2+δ
1 (X), respectively. By µ∗ we denote an invariant measure for

the model, which exists due to Theorem 1 in [10].

Further, let g ∈ B(X) be a Lipschitz function with constant Lg > 0. It is also assumed that

〈g, µ∗〉 = 0 (otherwise we could consider g̃ = g − 〈g, µ∗〉).
Let n ≥ 0. Note that by the Minkowski inequality in L2+δ(Pn

ε µ) and Lemma 1 (precisely

estimation (8)), we obtain
(

Eµ

(

|g(xn)|2+δ
))1/(2+δ)

=
(

∫

X
|g(x)|2+δPn

ε µ(dx)
)1/(2+δ)

≤ |g(x̄)|+ Lg

(

∫

X
̺2+δ
x̄ (x)Pn

ε µ(dx)
)1/(2+δ)

≤ |g(x̄)|+ Lg

((

〈̺2+δ
x̄ , µ〉

)1/(2+δ)
+ c
(

1− b1/(2+δ)
)−1)

<∞

(12)

and consequently supn≥0Eµ

(

|g(xn)|2+δ
)

<∞. Let x ∈ X. By (5) we have

∞
∑

i=0

|U i
εg(x)| =

∞
∑

i=0

|〈g, P i
εδx〉 − 〈g, P i

εµ∗〉|

≤
∞
∑

i=0

∫

(B̄(0,ε))i
|〈g, P i

h1 ,...,hi
δx〉 − 〈g, P i

h1,...,hi
µ∗〉|νε(dh1) . . . νε(dhi).

(13)

Further, due to (7), we obtain

|〈g, P i
h1,...,hi

δx〉 − 〈g, P i
h1,...,hi

µ∗〉| ≤
∫

X

∫

X2

|g(u) − g(v)|(Π∗
X2Π

∗
i Ĉ

∞
h1,h2,...((x, y, 1), ·))(du × dv) µ∗(dy)

≤ qiGC(1 + ̺x̄(x) + 〈̺x̄, µ∗〉),

(14)
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where G := max{Lg, supx∈X |g(x)|}. Comparing (13) and (14), we easily obtain

∞
∑

i=0

|U i
εg(x)| ≤ (1− q)−1GC(1 + ̺x̄(x) + 〈̺x̄, µ∗〉) <∞ (15)

and therefore we may define the function

χ(x) :=

∞
∑

i=0

U i
εg(x) for x ∈ X. (16)

Lemma 3. Let us consider the function χ, defined above. We have

|χ(x)− χ(y)| ≤ GC

1− q
(1 + ̺x̄(x) + ̺x̄(y)) for x, y ∈ X.

Proof. Fix x, y ∈ X. Following (5) and (7), we obtain

|χ(x)− χ(y)|

=
∣

∣

∣

∞
∑

i=0

U i
εg(x) −

∞
∑

i=0

U i
εg(y)

∣

∣

∣ ≤
∞
∑

i=0

∣

∣

∣〈g, P i
εδx〉 − 〈g, P i

εδy〉
∣

∣

∣

=

∞
∑

i=0

∫

(B̄(0,ε))i

∫

X2

|g(u) − g(v)|(Π∗
X2Π

∗
i Ĉ

∞
h1,h2,...((x, y, 1), ·))(du × dv) νε(dh1) . . . ν

ε(dhi)

≤
∞
∑

i=0

qiGC(1 + ̺x̄(x) + ̺x̄(y)) = (1− q)−1GC(1 + ̺x̄(x) + ̺x̄(y)).

Further, let us introduce random variables

Mn := χ(xn)− χ(x0) +
n−1
∑

i=0

g(xi) for n ≥ 0 (17)

and their square integrable differences which are of the form

Zn = χ(xn)− χ(xn−1) + g(xn−1) for n ≥ 1 (18)

and

Z0 = 0 Prob-a.s.

Lemma 4. (Mn)n≥0, defined by (17), is a martingale on the space (X∞,⊗∞
i=1BX ,Probµ) with

respect to its natural filtration.

Proof. Note that by the Markov property we have

Eµ (g(xn+1)|Fn) (ω) = Exn(ω) (g) = (Uεg)(xn(ω)) (19)
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and therefore

Eµ (Mn+1|Fn) = Eµ (χ(xn+1)|Fn)− χ(x0) +

n
∑

i=0

g(xi)

=

∞
∑

i=0

Uε(U
i
εg)(xn)− χ(x0) +

n
∑

i=0

g(xi)

=

∞
∑

i=1

U i
εg(xn) + U0

ε g(xn)− χ(x0) +

n−1
∑

i=0

g(xi) =Mn.

Lemma 5. The square integrable differences (Zn)n≥1, given by (18), are such that Eµ∗
Z2
1 <∞.

Proof. Let n ≥ 1 and µ ∈M2+δ
1 (X). Note that, by the Markov property (see (19), we obtain

Eµ(Z
2
n+1) = EPn

ε µ(Z
2
1 ) =

∫

X
E
(

(χ(x1)− χ(x0) + g(x0))
2 |x0 = x

)

Pn
ε µ(dx)

≤
∫

X
E
(

2χ2(x1) + 2(χ− g)2(x0)|x0 = x
)

Pn
ε µ(dx)

=

∫

X
2E
(

χ2(x1)|x0 = x
)

+ 2(χ− g)2(x) Pn
ε µ(dx)

≤ 2

∫

X

(

Uεχ
2
)

(x)Pn
ε µ(dx) + 4

∫

X
χ2(x)Pn

ε µ(dx) + 4

∫

X
g2(x)Pn

ε µ(dx)

= 2

∫

X
χ2(x)Pn+1

ε µ(dx) + 4

∫

X
χ2(x)Pn

ε µ(dx) + 4Eµ(g(xn))
2.

(20)

Following (12), we easily obtain that the last component of (20) is finite. Now, it is enough

to establish that
〈

χ2, Pn
ε µ
〉

is finite. Note that,

∫

X
χ2(x)Pn

ε µ(dx) =

∫

X
((χ(x)− χ(x̄)) + χ(x̄))2 Pn

ε µ(dx)

≤ 2χ2(x̄) + 2

∫

X
(χ(x)− χ(x̄))2 Pn

ε µ(dx).

(21)

The first component of (21) is finite due to (15) and (16). To show finiteness of the second compo-

nent, let us refer to Lemma 3 to obtain

2

∫

X
(χ(x)− χ(x̄))2Pn

ε µ(dx) ≤ 2

∫

X
(1− q)−2G2C2(1 + ̺x̄(x))

2Pn
ε µ(dx)

≤ 4G2C2(1− q)−2
(

1 +
〈

̺2x̄, P
n
ε µ
〉)

.

(22)

Consequently, by (12) and (20)-(22) we have

EPn
ε µ(Z

2
1 ) < C̃

(

1 +
〈

̺2x̄, P
n+1
ε µ

〉

+
〈

̺2x̄, P
n
ε µ
〉)
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and therefore, according to Lemma 1, we obtain

sup
n≥0

EPn
ε µ(Z

2
1 ) ≤ C̄

(

1 +
〈

̺2x̄, µ
〉)

<∞. (23)

Now, we easily check that x 7→ Ex(Z
2
1 ∧ k) is a bounded countinuous function, for every k ≥ 1.

Hence, we have limn→∞EPn
ε µ(Z

2
1 ∧ k) = Eµ∗

(Z2
1 ∧ k), as n → ∞. By (23), (Eµ∗

(Z2
1 ∧ k))k≥1 is

bounded. As a consequence, if we apply the Monotone Convergence Theorem, we finally obtain

limk→∞Eµ∗
(Z2

1 ∧ k) = Eµ∗
(Z2

1 ) <∞.

Set

σ2 := Eµ∗
Z2
1 . (24)

Lemma 6. Let µ ∈M2+δ
1 (X). If, for every n ≥ 0, Mn is given by (17) and s2n = EµM

2
n <∞, then

lim
n→∞

s2n
n

= σ2.

Proof. Following the proof of Lemma 5 (inequalities (20)-(23)), we obtain

sup
n≥1

Eµ|Zn|2+δ <∞. (25)

Therefore,

sup
n≥1

Eµ

(

Z2
n1{|Zn|2≥k}

)

≤ sup
n≥1

Eµ

(

|Zn|2+δ(|Zn|2)−δ/21{|Zn|2≥k}

)

≤ k−δ/2 sup
n≥1

Eµ|Zn|2+δ → 0,

as k → ∞. Now, since (Z2
1 ∧ k) are bounded continuous and Pε is Feller, we obtain

lim
n→∞

EPn
ε µ(Z

2
1 ∧ k) = Eµ∗

(Z2
1 ∧ k) for every k ≥ 1.

Note that the sequence (Eµ∗
(Z2

1 ∧ k))k≥1 is bounded and therefore the Monotone Convergence

Theorem implies

lim
k→∞

Eµ∗
(Z2

1 ∧ k) = Eµ∗
Z2
1 = σ2.

Hence, we also have

lim
n→∞

EµZ
2
n+1 = lim

n→∞
EPn

ε µZ
2
1 = Eµ∗

Z2
1 = σ2.

Finally, by orthogonality of martingale differences, we obtain

lim
n→∞

s2n
n

= lim
n→∞

EµM
2
n

n
= lim

n→∞

∑n
i=1EµZ

2
i

n
= σ2,

which completes the proof.
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Remark 7. The variance σ2 = Eµ∗
Z2
1 is compatible with the variance of limiting normal di-

stribution in the CLT (see Theorem 2, [10]), i.e. with σ2 = limn→∞Eµ∗

(

(S∗
n)

2
)

, where S∗
n =

n−1/2(g(x0) + . . .+ g(xn−1)) for n ∈ N .

Proof. Note that

lim
n→∞

Eµ∗

(

(S∗
n)

2
)

= lim
n→∞

Eµ∗



n−1

(

n−1
∑

i=0

g(xi)

)2




= lim
n→∞

Eµ∗

(

n−1 (Mn + χ(x0)− χ(xn))
2
)

= lim
n→∞

Eµ∗

(

n−1M2
n

)

+ lim
n→∞

2n−1/2Eµ∗

((

n−1/2Mn

)

(χ(x0)− χ(xn))
)

+ lim
n→∞

n−1Eµ∗
(χ(x0)− χ(xn))

2 .

(26)

Referring to Lemma 6, we have limn→∞Eµ∗

(

n−1M2
n

)

= Eµ∗
Z2
1 . Further, due to Lemma 3 we

obtain

Eµ∗
(χ(x0)− χ(xn))

2 =

∫

X

∫

X
(χ(u)− χ(v))2 Pn

ε δu(dv)µ∗(du)

≤
∫

X

∫

X
G2C2

5 (1− q)−2(1 + ̺x̄(u) + ̺x̄(v))
2Pn

ε δu(dv)µ∗(du)

≤ C0

∫

X

∫

X
(1 + ̺2x̄(u) + ̺2x̄(v))P

n
ε δu(dv)µ∗(du)

≤ C0

∫

X

(

1 + ̺2x̄(u) +
〈

̺2x̄, P
n
ε δu

〉)

µ∗(du),

(27)

where C0 is some constant. According to (8) we obtain

Eµ∗
(χ(x0)− χ(xn))

2 ≤ C̃0

∫

X

(

1 + ̺2x̄(u)
)

µ∗(du) <∞, (28)

where C̃0 is some positive constant. By the Hölder inequality, we get

Eµ∗

∣

∣

∣

(

n−1/2Mn

)

(χ(x0)− χ(xn))
∣

∣

∣
≤
(

Eµ∗

(

n−1M2
n

))1/2
(

Eµ∗
(χ(x0)− χ(xn))

2
)1/2

<∞

and therefore

lim
n→∞

2n−1/2Eµ∗

((

n−1/2Mn

)

(χ(x0)− χ(xn))
)

= 0. (29)

Summarizing the above estimates (26)-(29), we obtain

lim
n→∞

Eµ∗

(

(S∗
n)

2
)

= Eµ∗
Z2
1 ,

which completes the proof.
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Lemma 8. The square integrable martingale differences (Zn)n≥1 satisfy

1

n

n
∑

l=1

Z2
l → σ2 Probµ-a.s., as n→ ∞, (30)

and consequently condition (11) holds for σ2 > 0.

Proof. The idea of the proof is based on the property of asymptotic stability of the model, as well

as on the Birkhoff Individual Ergodic Theorem.

The essence is to show that functions

x 7→ Ex

(∣

∣

∣lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣ ∧ 1
)

x 7→ Ex

(∣

∣

∣lim supn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣ ∧ 1
)

(31)

are not only bounded, which is obvious, but also continuous. Indeed, if continuity is provided, we

use the fact that Pm
ε µ converges weakly to µ∗, as m→ ∞ (see Theorem 1, [10]), to obtain

Eµ

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

=

∫

X
Ex

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

µ(dx)

=

∫

X
Ex

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

Pm
ε µ(dx)

m→∞−−−−→ Eµ∗

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

.

(32)

Now, if we compare it with the Birkhoff Individual Ergodic Theorem, which says that

Eµ∗

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

= 0,

we may claim that

Eµ

(∣

∣

∣
lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

− σ2
∣

∣

∣
∧ 1
)

= 0.

This, in turn, impies

lim infn→∞

( 1

n

n
∑

l=1

Z2
l

)

= σ2 Probµ-a.s. (33)

Analogously, we may show that

lim supn→∞

( 1

n

n
∑

l=1

Z2
l

)

= σ2 Probµ-a.s. (34)

Finally, (33) and (34) imply (30).
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To complete the proof, continuity of both functions given by (31) should be established, just to

make it clear that the convergence in (32) occurs. Note that

Ex

(∣

∣

∣

∣

∣

lim infn→∞

(

1

n

n
∑

l=1

Z2
l

)

− σ2

∣

∣

∣

∣

∣

∧ 1

)

= lim
n→∞

lim
k→∞

Ex

(∣

∣

∣

∣

∣

min
n≤j≤n+k

(

1

j

j
∑

l=1

Z2
l − σ2

)∣

∣

∣

∣

∣

∧ 1

)

= lim
n→∞

lim
k→∞

Hn,k(x),

(35)

where

Hn,k(x) := Ex

(∣

∣

∣

∣

∣

min
n≤j≤n+k

(

1

j

j
∑

l=1

Z2
l − σ2

)∣

∣

∣

∣

∣

∧ 1

)

. (36)

Let us introduce

ψn,k(y0, . . . , yn+k) =

∣

∣

∣

∣

∣

min
n≤j≤n+k

(

1

j

(

j
∑

l=1

(χ(yl)− χ(yl−1) + g(yl−1))
2 ∧ j

(

1 + σ2
)

)

− σ2

)∣

∣

∣

∣

∣

.

(37)

Recalling the definition of martingale differences (Zn)n≥1 (see (18)) and following the property

∣

∣

∣

∣

min
n≤j≤n+k

(

cj
j
− b

)∣

∣

∣

∣

∧ 1 =

∣

∣

∣

∣

min
n≤j≤n+k

(

1

j
(cj ∧ j(1 + b))− b

)∣

∣

∣

∣

,

we obtain

Hn,k(x) = Ex (ψn,k(x0, x1, . . . , xn+k)) . (38)

The idea to express the functions in interest in terms of (35)-(38) comes from [3] or [11]. However,

the final step to show the continuity of functions is established thanks to the coupling measure.

As mentioned at the beginning of the section (xn)n≥0 and (yn)n≥0 are Markov chains with trans-

ition probability function Πε and initial distributions µ, ν ∈ M2+δ
1 (X), respectively. In particular,

we may set µ := δx and ν := δy. For technical reasons, we also consider (x̃n)n≥0 and (ỹn)n≥0, which

are non-homogenous Markov chains with sequence of transition probability functions (Π1
hi
)i≥1, given

by (3), and initial distributions δx and δy, respectively. Note that, according to (5), we obtain

Pεδx(·) =
∫

B̄(0,ε)
Π1

h1
(x, ·)νε(dh1)

and therefore,

Exψ(x0, . . . , xn+k) =

∫

(B̄(0,ε))n+k

Exψ(x̃0, . . . , x̃n+k) ν
ε(dh1) . . . ν

ε(dhn+k). (39)
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Let us remind the reader that there exists the appropriate coupling measure C∞
h1,h2,...

((x, y), ·) on

(X2)∞ such that

C∞
h1,h2,...((x, y), A ×X) = Π∞

h1,h2,...(x,A) and C∞
h1,h2,...((x, y),X ×B) = Π∞

h1,h2,...(y,B)

for every A,B ∈ ⊗∞
i=1BX , as well as the coupling measure Ĉ∞

h1,h2,...
((x, y, 1), ·) on the augmented

space (X2×{0, 1})∞ (see Section 7 in [10] for the full construction of coupling measures for iterated

function systems). The expected value according to the measure Ĉ∞
h1,h2,...

((x, y, 1), ·) is denoted by

Ex,y.

Let us further introduce an auxiliary function

H̃n,k(x) = Ex

(

ψn,k(x̃0, x̃1, . . . , x̃n+k)
)

. (40)

Then,

lim
n→∞

lim
k→∞

∣

∣

∣
H̃n,k(x)− H̃n,k(y)

∣

∣

∣
= lim

n→∞
lim
k→∞

|Ex (ψ(x̃0, . . . , x̃n+k))− Ey (ψ(ỹ0, . . . , ỹn+k))|

≤ lim
n→∞

lim
k→∞

Ex,y |ψ(x̃0, . . . , x̃n+k)− ψ(ỹ0, . . . , ỹn+k)| .
(41)

It is easy to see that

min
1≤j≤n

(fj(xj))− min
1≤j≤n

(fj(yj)) ≤ max
1≤i≤n

|fi(xi)− fi(yi)|

for arbitrary functions fi : X → R and points xi, yi ∈ X, 1 ≤ i ≤ n. We use this fact to obtain

lim
n→∞

lim
k→∞

∣

∣

∣
H̃n,k(x)− H̃n,k(y)

∣

∣

∣

≤ lim
n→∞

lim
k→∞

Ex,y

(

max
n≤i≤n+k

1

i

i
∑

l=1

∣

∣

∣ (χ(x̃l)− χ(x̃l−1) + g(x̃l−1))
2 ∧ i(1 + σ2)

− (χ(ỹl)− χ(ỹl−1) + g(ỹl−1))
2 ∧ i(1 + σ2)

∣

∣

∣

)

.

(42)

Note that the right side of (42) is equal to

lim
n→∞

lim
k→∞

Ex,y

(

max
n≤i≤n+k

1

i

i
∑

l=k0

∣

∣

∣ (χ(x̃l)− χ(x̃l−1) + g(x̃l−1))
2 ∧ i(1 + σ2)

− (χ(ỹl)− χ(ỹl−1) + g(ỹl−1))
2 ∧ i(1 + σ2)

∣

∣

∣

)
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for arbitrary k0 ≥ 1. Further, due to the fact that the functions are bounded, we obtain
∣

∣

∣H̃n,k(x)− H̃n,k(y)
∣

∣

∣

≤ Ex,y



 max
n≤i≤n+k

1

i

i
∑

l=k0

|(χ(x̃l)− χ(x̃l−1) + g(x̃l−1))− (χ(ỹl)− χ(ỹl−1) + g(ỹl−1))| 2i(1 + σ2)





≤ 2(1 + σ2)Ex,y





n+k
∑

l=k0

|χ(x̃l)− χ(ỹl)|+ |χ(x̃l−1)− χ(ỹl−1)|+ |g(x̃l−1)− g(ỹl−1)|



 .

(43)

Let us now evaluate

Ex,y |χ(x̃l)− χ(ỹl)| ≤
∞
∑

i=0

Ex,y

∣

∣U i
εg(x̃l)− U i

εg(ỹl)
∣

∣

=
∞
∑

i=0

∫

X2

∣

∣U i
εg(u) − U i

εg(v)
∣

∣

(

Π∗
X2Π

∗
l Ĉ

∞
h1,h2,...((x, y, 1), ·)

)

(du× dv)

=

∞
∑

i=0

∫

X2

∣

∣

〈

g, P i
εδu
〉

−
〈

g, P i
εδv
〉∣

∣

(

Π∗
X2Π

∗
l Ĉ

∞
h1,h2,...((x, y, 1), ·)

)

(du× dv)

=
∞
∑

i=0

∫

X2

∣

∣

∣

∣

∣

∫

(B̄(0,ε))
i

∫

X2

g(z)
(

Πi
hl+1,...,hl+i

(u, ·) −Πi
hl+1,...,hl+i

(v, ·)
)

(dz) νε(dhl+1) . . . ν
ε(dhl+i)

∣

∣

∣

∣

∣

×
(

Π∗
X2Π

∗
l Ĉ

∞
h1,h2,...((x, y, 1), ·)

)

(du× dv)

≤
∞
∑

i=0

∫

(B̄(0,ε))
i

∫

X2

∫

X2

|g(z1)− g(z2)|
(

Π∗
X2Π

∗
i Ĉ

∞
hl+1,hl+2,...

((u, v, 1), ·)
)

(dz1 × dz2)

×
(

Π∗
X2Π

∗
l Ĉ

∞
h1,h2,...((x, y, 1), ·)

)

(du× dv) νε(dhl+1) . . . ν
ε(dhl+i).

The appropriate properties of coupling measure we use (see condition (d) in Section 3.2) imply the

following estimation

Ex,y |χ(x̃l)− χ(ỹl)|

≤
∞
∑

i=0

∫

(B̄(0,ε))
i

∫

X2

|g(z1)− g(z2)|
(

Π∗
X2Π

∗
l+iĈ

∞
h1,h2,...((x, y, 1), ·)

)

(dz1 × dz2) ν
ε(dhl+1) . . . ν

ε(dhl+i).

Hence, due to (7), we obtain

Ex,y |χ(x̃l)− χ(ỹl)| ≤
∞
∑

i=0

∫

(B̄(0,ε))
i
CGql+i(1 + ̺x̄(x) + ̺x̄(y)) ν

ε(dhl+1) . . . ν
ε(dhl+i)

≤ CG(1 + ̺x̄(x) + ̺x̄(y))

∞
∑

i=l

qi.

(44)

Simultaneously,

Ex,y|g(x̃l−1)− g(ỹl−1)| ≤ CGql−1(1 + ̺x̄(x) + ̺x̄(y)). (45)
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Note that, thanks to (44) and (45), the expression (43) may now be estimated by

2(1 + σ2)CG(1 + ̺x̄(x) + ̺x̄(y))
n+k
∑

l=k0

(

∞
∑

i=l

qi +
∞
∑

i=l−1

qi + ql−1

)

≤ 4(1 + σ2)CG(1 + ̺x̄(x) + ̺x̄(y))

n+k
∑

l=k0

(

ql−1
∞
∑

i=0

qi

)

=
4

1− q
(1 + σ2)CG(1 + ̺x̄(x) + ̺x̄(y))

n+k
∑

l=k0

ql−1.

The estimate is independent of (hi)i≥1 and therefore we obtain

lim
n→∞

lim
k→∞

|Hn,k(x)−Hn,k(y)| ≤
4

1− q
(1 + σ2)CG(1 + ̺x̄(x) + ̺x̄(y))

∞
∑

l=k0

ql−1.

Note that k0 is arbitrary and therefore can be chosen so small that
∑∞

l=k0
ql−1 is as close to zero as

we wish. Then, limn→∞ limk→∞ |Hn,k(x)−Hn,k(y)| = 0 for every x, y ∈ X. The proof is complete.

Lemma 9. Let σ2 > 0. Under Assumptions (I)-(VI), the square integrable martingale differences

(Zn)n≥1 satisfy conditions (9) and (10).

Proof. Let µ ∈M2+δ
1 (X). Note that

∞
∑

n=1

s−4
n Eµ

(

Z4
n1{|Zn|<γsn}

)

≤
∞
∑

n=1

s−4
n γ2−δs2−δ

n Eµ|Zn|2+δ ≤ γ2−δ sup
n≥1

Eµ|Zn|2+δ
∞
∑

n=1

s−2−δ
n .

Recall that supn≥1Eµ|Zn|2+δ <∞ (see (25)). On the other hand, by Lemma 6 we have s2n/n → σ2,

as n→ ∞, which implies
∑∞

n=1 s
−2−δ
n <∞ and completes the proof of condition (9).

To show condition (10), observe that

∞
∑

n=1

s−1
n Eµ

(

|Zn|1{|Zn|≥ϑsn}

)

≤
∞
∑

n=1

s−1
n Eµ

( |Zn|2+δ

(ϑsn)1+δ

)

≤ ϑ−1−δ sup
n≥1

Eµ|Zn|2+δ
∞
∑

n=1

s−2−δ
n <∞.

C. Main result

The CLT is verified for the generalised cell cycle model introduced and characterised in Section

III (see Theorem 2, [10]). Now, it is natural to ask for the proof of the LIL.

Theorem 10. Let (X, ̺) be a Polish space and (xn)n≥0 a Markov chain with state space X, transi-

tion probability function Πε and initial distribution µ ∈M2+δ
1 (X). We assume conditions (I)-(VI),
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which entail all properties described in Section III. If g is a Lipschitz function with 〈g, µ∗〉 = 0 and

σ2 > 0, then Probµ-a.s. the sequence

θn(t) =

∑k
i=1 g(xi) + (nt− k)g(xk+1)

σ
√
2n log log n

for k ≤ nt ≤ k + 1, k = 1, . . . , n − 1, t > 0, n > e, and θn(t) = 0 otherwise, is relatively compact

in C and the set of its limit points coincides with K.

Proof. We begin with the observation that, since s2n/n → σ2 > 0, as n → ∞ (see Lemma 6), we

obtain
√

2s2n log log s
2
n

σ
√
2n log log n

→ 1, as n→ ∞.

Hence, from Lemmas 8 and 9, it follows that the sequence

ηn(t) =
Mk + (s2nt− s2k)(s

2
k+1 − s2k)

−1Zk+1

σ
√
2n log log n

for s2k ≤ s2nt ≤ s2k+1, k = 1, . . . , n − 1 and t > 0, n > e, and ηn(t) = 0 otherwise, is relatively

compact in C and the set of its limit points coincides with K (see [8]). Let t ∈ (0, 1] and n ≥ e.

Now, if k ≤ nt ≤ k + 1, then

kσ2

s2k
s2k ≤ nσ2

s2n
ts2n ≤ (k + 1)σ2

s2k+1

s2k+1.

Set

η̂n(t) :=
Mk + (nt− k)Zk+1

σ
√
2n log log n

, (46)

where k ≥ 1 is such that k ≤ nt ≤ k + 1. Since nσ2/s2n → 1, as n→ ∞, we obtain

(1− ǫ̃)s2k ≤ (1 + ǫ̃)s2nt ≤ (1 + ǫ̃)2(1− ǫ̃)−1s2k+1

for every ǫ̃ > 0 and n large enough. As a consequence, there is t∗ ∈ [t(1−ǫ̃)(1+ǫ̃)−1, t(1+ǫ̃)(1−ǫ̃)−1]

such that s2k ≤ s2nt∗ ≤ s2k+1. On the other hand, the diameters of the intervals [s2k/s
2
n, s

2
k+1/s

2
n] for

1 ≤ k ≤ n − 1, converge to 0, as n → ∞. Hence, there exists tn > 0 such that η̂n(t) = ηn(tn) and

tn → t, as n → ∞. Recall that the sequence (ηn(t))n≥e is relatively compact in C and the set of

its limit points coincides with K. Therefore, the sequence (η̂n(t))n>e is also relatively compact in C
and has the same set of limit points.

Fix ǫ̃ > 0 and define the set

An :=

{

ω ∈ Ω :
|Mn(ω)−

∑n−1
i=1 g(xi(ω))|√
n

≥ ǫ̃

2

}

∪
{

ω ∈ Ω :
|Zn(ω)− g(xn(ω))|√

n
≥ ǫ̃

2

}

for n ≥ 1.

(47)
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Let us now show that
∑∞

n=1 Probµ(An) < ∞. Choose ǫ > 0. Note that, by the Markov inequality

and the fact that there is δ1 > 0 such that (ζ + ξ)2+δ ≤ (2+ ǫ)(ζ2+δ + ξ2+δ) for ζ, ξ ≥ 0, δ ∈ (0, δ1),

we obtain

Probµ

(

ω ∈ Ω :
|Mn(ω)−

∑n−1
i=1 g(xi(ω))|√
n

≥ ǫ̃

2

)

= Probµ

(

ω ∈ Ω :
|χ(xn(ω))− χ(x0(ω))|√

n
≥ ǫ̃

2

)

≤
(

2

ǫ̃

)2+δ

(2 + ǫ)
Eµ|χ(xn)|2+δ + Eµ|χ(x0)|2+δ

n1+δ/2
.

Now, observe that, due to Lemma 3

Eµ|χ(xn)|2+δ =

∫

X
|χ(x)|2+δPn

ε µ(dx)

≤ (2 + ǫ)|χ(x̄)|2+δ + (2 + ǫ)

∫

X
|χ(x)− χ(x̄)|2+δPn

ε µ(dx)

≤ (2 + ǫ)|χ(x̄)|2+δ + (2 + ǫ)2G2+δC2+δ(1− q)−(2+δ)(1 + 〈̺2+δ
x̄ , Pn

ε µ〉).

(48)

Note that the first component of (48) is finite due to (15) and (16), while the second is finite due

to Lemma 1. Hence,

Probµ

(

ω ∈ Ω :
|Mn(ω)−

∑n−1
i=1 g(xi(ω))|√
n

≥ ǫ̃

2

)

≤ c1

n1+δ/2
, (49)

where c1 > is some constant independent of n. Similarly,

Probµ

{

ω ∈ Ω :
|Zn(ω)− g(xn(ω))|√

n
≥ ǫ̃

2

}

= Probµ

{

ω ∈ Ω :
|χ(xn+1(ω))− χ(xn(ω))|√

n
≥ ǫ̃

2

}

≤ c2

n1+δ/2
,

(50)

where c2 > is some constant independent of n. By (49) and (50), the series
∑∞

n=1 Probµ(An) is

convergent.

Finally, following the Borel-Cantelli Lemma, we obtain that Probµ-a.s.

lim supn→∞sup0<t≤1

∣

∣

∣

∣

∣

Mk − (nt− k)Zk+1

σ
√
2n log log n

−
∑k

i=1 g(xi) + (nt− k)g(xk+1)

σ
√
2n log log n

∣

∣

∣

∣

∣

< ǫ̃,

where k ≤ nt ≤ k + 1. This implies lim supn→∞ sup0<t≤1 |η̃n(t) − θn(t)| ≤ ǫ̃. Since ǫ̃ > 0 was

arbitrary, the proof is complete.
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