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EQUICONTINUOUS FAMILIES OF MARKOV OPERATORS IN VIEW

OF ASYMPTOTIC STABILITY

SANDER C. HILLE, TOMASZ SZAREK, AND MARIA A. ZIEMLAŃSKA

Abstract. Relation between equicontinuity – the so-called e–property and stability of
Markov operators is studied. In particular, it is shown that any asymptotically stable
Markov operator with an invariant measure such that the interior of its support is non-
empty satisfies the e–property.

1. Introduction

This paper is centered around two concepts of equicontinuity for Markov operators defined
on probability measures on Polish spaces: the e-property and the Cesàro e-property. Both
appeared as a condition (among others) in the study of ergodicity of Markov operators.
In particular they are very useful in proving existence of a unique invariant measure and
its asymptotic stability: at whatever probability measure one starts, the iterates under the
Markov operator will weakly converge to the invariant measure. The first concept appeared
in [8, 12] while the second was introduced in [14] as a theoretical generalisation of the first
and allowed the author to extend various results by replacing the e-property condition by
apparently weaker the Cesàro e-property condition, among others.

Interest in equicontinuous families of Markov operators existed already before the intro-
duction of the e-property. Jamison [6], working on compact metric state spaces, introduced
the concepts of (dual) Markov operators on the continuous functions that are ‘uniformly
stable’ or ‘uniformly stable in mean’ to obtain a kind of asymptotic stability results in
this setting. Meyn and Tweedie [10] introduced the so-called ‘e-chains’ on locally compact
Hausdorff topological state spaces, for similar purposes. See also [15] for results in a locally
compact metric setting.

The above mentioned concepts were used in proving ergodicity for some Markov chains
(see [11, 1, 2, 4, 5, 7, 13]).
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It is worth mentioning here that similar concepts appear in the study of mean equicontinous
dynamical systems mainly on compact spaces (see for instance [9]). However it must be
stressed here that our space of Borel probability measures defined on some Polish space is
non-compact.

Studing the e–property the natural question arose whether any asymptotically stable
Markov operator satisfies this property. Proposition 6.4.2 in [10] says that this holds
when the phase space is compact. In particular, the authors showed that the stronger
e–chain property is satisfied. Unfortunately, the proof contains a gap and it is quite easy
to construct an example showing that some additional assumptions must be then added.

On the other hand, striving to repair the gap of the Meyn-Tweedie result mentioned above,
we show that any asymptotically stable Markov operator with an invariant measure such
that the interior of its support is nonempty satisfies the e–property.

2. Preliminaries

Let (S, d) be a Polish space. By B(x, r) we denote the open ball in (S, d) of radius r,
centered at x ∈ S and ∂B(x, r) denotes its boundary. Further E, IntSE denote the closure
of E ⊂ S and the interior of E, respectively. By Cb(S) we denote the vector space of
all bounded real-valued continuous functions on S and by Bb(S) all bounded real-valued
Borel measurable functions, both equipped with the supremum norm | · |. By Lb(S) we
denote the subspace of Cb(S) of all bounded Lipschitz functions (for the metric d on S).
For f ∈ Lb(S), Lipf denotes the Lipschitz constant of f .

By M(S) we denote the family of all finite Borel measures on S and by P(S) the subfamily
of all probability measures in M(S). For µ ∈ M(S), its support is the set

supp µ := {x ∈ S : µ(B(x, r)) > 0 for all r > 0}.

An operator P : M(S) → M(S) is called a Markov operator (on S) if it satisfies the
following two conditions:

(i) (Positive linearity) P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2

for λ1, λ2 ≥ 0; µ1, µ2 ∈ M(S);

(ii) (Preservation of the norm) Pµ(S) = µ(S) for µ ∈ M(S).

A measure µ∗ is called invariant if Pµ∗ = µ∗. A Markov operator P is asymptotically
stable if there exists a unique invariant measure µ∗ ∈ P(S) such that P nµ → µ∗ weakly as
n → ∞ for every µ ∈ P(S).

For brevity we shall use the notation:

〈f, µ〉 :=

∫

S

f(x)µ(dx) for f ∈ Bb(S), µ ∈ M(S).
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A Markov operator P is regular if there exists a linear operator U : Bb(S) → Bb(S) such
that

〈f, Pµ〉 = 〈Uf, µ〉 for all f ∈ Bb(S), µ ∈ M(S).

The operator U is called the dual operator of P . A regular Markov operator is a Feller
operator if its dual operator U maps Cb(S) into itself. Equivalently, P is Feller if it is
continuous in the weak topology (cf. [14], Proposition 3.2.2).

A Feller operator P satisfies the e–property at z ∈ S if for any f ∈ Lb(S) we have

(1) lim
x→z

lim sup
n→∞

|Unf(x)− Unf(z)| = 0,

i.e., if the family of iterates {Unf : n ∈ N} is equicontinuous at z ∈ S. We say that a
Feller operator satisfies the e–property if it satisfies it at any z ∈ S.

D. Worm slightly generalized the e–property introducing the Cesáro e–property (see [14]).
Namely, a Feller operator P will satisfy the Cesáro e–property at z ∈ S if for any f ∈ Lb(S)
we have

(2) lim
x→z

lim sup
n→∞

∣
∣
∣
∣
∣

1

n

n∑

k=1

Ukf(x)−
1

n

n∑

k=1

Ukf(z)

∣
∣
∣
∣
∣
= 0.

Analogously a Feller operator satisfies the Cesáro e–property if it satisfies this property at
any z ∈ S.

The following simple example shows that Proposition 6.4.2 in [10] fails.

Example 2.1. Let S = {1/n : n ≥ 1} ∪ {0} and let T : S → S be given by the following
formula:

T (0) = T (1) = 0 and T (1/n) = 1/(n− 1) for n ≥ 2.

The operator P : M(S) → M(S) given by the formula Pµ = T∗(µ) (the pushforward
measure) is asymptotically stable but it does not satisfy the e–property at 0.

Jamison [6] introduced for a Markov operator the property of uniform stability in mean
when {Unf : n ∈ N} is an equicontinuous family of functions in the space of real-vauled
continuous function C(S) for every f ∈ C(S). Here C is a compact metric space. Since
the space of bounded Lipschitz functions is dense for the uniform norm in the space of
bounded uniform continuous functions, this property coincides with the Cesáro e–property
for compact metric spaces. Now, if the Markov operator P on the compact metric space
is asymptotically stable, with the invariant measure µ∗ ∈ M1, then

1
n

∑n

i=1 U
if → 〈f, µ∗〉

pointwise, for every f ∈ C(S). According to Theorem 2.3 in [6] this implies that P is
uniformly stable in mean, i.e., has the Cesáro e–property.

Example 2.2. Let (kn)n≥1 be an increasing sequence of prime numbers. Set

S := {(

kin−1−times
︷ ︸︸ ︷

0, . . . , 0, i/kn, 0, . . .) ∈ l∞ : i ∈ {0, . . . , kn}, n ∈ N}.
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The set S endowed with the l∞-norm ‖ · ‖∞ is a (noncompact) Polish space. Define T :
S → S by the formula

T ((0, . . .)) = T ((

k
kn
n −1−times
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . .)) = (0, . . . , 0, . . .) for n ∈ N

and

T ((

kin−1−times
︷ ︸︸ ︷

0, . . . , 0, i/kn, 0, . . .)) = (

k
i+1
n −1−times
︷ ︸︸ ︷

0, . . . , 0, (i+ 1)/kn, 0, . . .) for i ∈ {1, . . . , kn − 1}, n ∈ N.

The operator P : M(S) → M(S) given by the formula Pµ = T∗(µ) is asymptotically
stable but it does not satisfy the Cesáro e–property at 0. Indeed, if we take an arbitrary
continuous function f : S → R+ such that f((0, . . . , 0, . . .)) = 0 and f(x) = 1 for x ∈ S
such that ‖x‖∞ ≥ 1/2 we have

1

kn

kn∑

i=1

U if((

kn−1
︷ ︸︸ ︷

0, . . . , 0, 1/kn, 0, . . .))−
1

kn

kn∑

i=1

U if((0, . . .)) ≥ 1/2.

We are in a position to formulate the main result of our paper:

Theorem 2.3. Let P be an asymptotically stable Feller operator and let µ∗ be its unique
invariant measure. If IntS(supp µ∗) 6= ∅, then P satisfies the e–property.

Its proof involves the following lemma:

Lemma 2.4. Let P be an asymptotically stable Feller operator and let µ∗ be its unique
invariant measure. Let U be dual to P . If IntS(supp µ∗) 6= ∅, then for every f ∈ Cb(S)
and any ε > 0 there exists a ball B ⊂ supp µ∗ and N ∈ N such that

(3) |Unf(x)− Unf(y)| ≤ ε for any x, y ∈ B, n ≥ N.

Proof. Fix f ∈ Cb(S) and ε > 0. Let W be an open set such that W ⊂ supp µ∗. Set
Y = W and observe that the subspace Y is a Baire space. Set

Yn := {x ∈ Y : |Umf(x)− 〈f, µ∗〉| ≤ ε/2 for all m ≥ n}

and observe that Yn is closed and

Y =

∞⋃

n=1

Yn.

By the Baire category theorem there exist N ∈ N such that IntY YN 6= ∅. Thus there
exists a set V ⊂ YN open in the space Y and consequently a ball B in S such that
B ⊂ YN ⊂ suppµ∗. Since

|Unf(x)− 〈f, µ∗〉| ≤ ε/2 for any x ∈ B and n ≥ N,

condition (3) is satisfied. �

We are ready to prove Theorem 2.3.
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Proof. Assume, contrary to our claim, that P does not satisfy the e–property. Therefore
there exist a function f ∈ Cb(S) and a point x0 ∈ S such that

lim sup
x→x0

lim sup
n→∞

|Unf(x)− Unf(x0)| > 0.

Choose ε > 0 such that

lim sup
x→x0

lim sup
n→∞

|Unf(x)− Unf(x0)| ≥ 3ε.

Let B := B(z, 2r) be a ball such that condition (3) holds. Since B(z, r) ⊂ supp µ∗, we have
γ := µ∗(B(z, r)) > 0. Choose α ∈ (0, γ). Since the operator P is asymptotically stable, we
have

(4) lim inf
n→∞

P nµ(B(z, r)) > α for all µ ∈ P(S),

by the Alexandrov theorem (see [3]).

Let k ≥ 1 be such that 2(1−α)k|f | < ε. By induction we are going to define two sequences
of measures (νx0

i )ki=1, (µ
x0

i )ki=1 and a sequence of integers (ni)
k
i=1 in the following way: let

n1 ≥ 1 be such that

(5) P n1δx0
(B(z, r)) > α.

Choose r1 < r such that P n1δx0
(B(z, r1)) > α and P n1δx0

(∂B(z, r1)) = 0 and set

(6) νx0

1 (·) =
P n1δx0

(· ∩B(z, r1))

P n1δx0
(B(z, r1))

and

(7) µx0

1 (·) =
1

1− α
(P n1δx0

(·)− ανx0

1 (·)) .

Assume that we have done it for i = 1, . . . , l, for some l < k. Now let nl+1 be such that

(8) P nl+1µx0

l (B(z, r)) > α.

Choose rl+1 < r such that P nl+1µx0

l (B(z, rl+1)) > α and P nl+1µx0

l (∂B(z, rl+1)) = 0 and set

(9) νx0

l+1(·) =
P nl+1µx0

l (· ∩ B(z, rl+1))

P nl+1µx0

l (B(z, rl+1))

and

(10) µx0

l+1(·) =
1

1− α

(
P nl+1µx0

l (·)− ανx0

l+1(·)
)
.

We are done. We have

P n1+...+nkδx0
(·) = αP n2+...+nkνx0

1 (·) + α(1− α)P n3+...+nkνx0

2 (·) + . . .+

+ α(1− α)k−1νx0

k (·) + (1− α)kµx0

k (·).

By induction we check that νx
i −νx0

i → 0 and µx
i −µx0

i → 0 weakly as d(x, x0) → 0. Indeed,
if i = 1, then νx

1 −νx0

1 → 0 weakly (as d(x, x0) → 0), by the fact that P is a Feller operator
and limd(x,x0)→0 P

n1δx(B(z, r1)) = P n1δx0
(B(z, r1)), by the Alexandrov theorem due to the
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fact that P n1δx0
(∂B(z, r1)) = 0. On the other hand, the weak convergence µx

1 − µx0

1 → 0
as d(x, x0) → 0 follows directly from the definition of µx

1. Moreover, observe that for x
sufficiently close to x0 we have P n1δx(B(z, r)) > α and therefore µx

1 ∈ P(S).

Assume now that we have proved that νx
i −νx0

i → 0 and µx
i −µx0

i → 0 weakly as d(x, x0) → 0
for i = 1, . . . , l. We show that νx

l+1 − νx0

l+1 → 0 and µx
l+1 − µx0

l+1 → 0 weakly as d(x, x0) → 0
too. Analogously, limd(x,x0)→0 P

nl+1µx
l (B(z, rl+1)) = P nl+1µx0

l (B(z, rl+1)), by the Alexan-
drov theorem due to the fact that P nl+1µx0

l (∂B(z, rl+1)) = 0 and from the definition of
νx
l+1 we obtain that νx

l+1 − νx0

l+1 → 0 weakly as d(x, x0) → 0. The weak convergence
µx
l+1 − µx0

l+1 → 0 as d(x, x0) → 0 follows now directly from the definition of µx
l+1 and for x

sufficiently close to x0 we have P nl+1µx
l (B(z, r)) > α and therefore µx

l+1 ∈ P(S). We are
done.

Observe that for any x sufficiently close to x0 and all n ≥ n1 + . . .+ nk we have

P nδx(·) = αP n−n1νx
1 (·) + α(1− α)P n−n1−n2νx

2 (·) + . . .

+ α(1− α)k−1P n−n1−...−nkνx
k (·) + (1− α)kP n−n1−...−nkµx

k(·),

where supp νx
i ⊂ B(z, r) for all i = 1, . . . , k. Thus

lim sup
n→∞

|〈f, P nνx
i 〉 − 〈f, P nνx0

i 〉| = lim sup
n→∞

|〈Unf − 〈f, µ∗〉, ν
x
i 〉 − 〈Unf − 〈f, µ∗〉, ν

x0

i 〉|

≤ ε/2 + ε/2 = ε(11)

for all i = 1, . . . , k and x sufficiently close to x0. Hence

3ε < lim sup
x→x0

lim sup
n→∞

|Unf(x)− Unf(x0)| = lim sup
x→x0

lim sup
n→∞

|〈f, P nδx〉 − 〈f, P nδx0
〉|

≤ ε(α+ α(1− α) + . . . α(1− α)k−1) + 2(1− α)k|f |

≤ ε+ ε = 2ε,

which is impossible. This completes the proof. �
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