4,204 research outputs found

    Wi-Fi fingerprinting based on collaborative confidence level training

    Get PDF
    Wi-Fi fingerprinting has been a popular indoor positioning technique with the advantage that infrastructures are readily available in most urban areas. However wireless signals are prone to fluctuation and noise, introducing errors in the final positioning result. This paper proposes a new fingerprint training method where a number of users train collaboratively and a confidence factor is generated for each fingerprint. Fingerprinting is carried out where potential fingerprints are extracted based on the confidence factor. Positioning accuracy improves by 40% when the new fingerprinting method is implemented and maximum error is reduced by 35%

    Collaborative Wi-Fi fingerprint training for indoor positioning

    Get PDF
    As the scope of location-based applications and services further reach into our everyday lives, the demand for more robust and reliable positioning becomes ever more important. However indoor positioning has never been a fully resolved issue due to its complexity and necessity to adapt to different situations and environment. Inertial sensor and Wi-Fi signal integrated indoor positioning have become good solutions to overcome many of the problems. Yet there are still problems such as inertial heading drift, wireless signal fluctuation and the time required for training a Wi-Fi fingerprint database. The collaborative Wi-Fi fingerprint training (cWiDB) method proposed in this paper enables the system to perform inertial measurement based collaborative positioning or Wi-Fi fingerprinting alternatively according to the current situation. It also reduces the time required for training the fingerprint database. Different database training methods and different training data size are compared to demonstrate the time and data required for generating a reasonable database. Finally the fingerprint positioning result is compared which indicates that the cWiDB is able to achieve the same positioning accuracy as conventional training methods but with less training time and a data adjustment option enabled

    Anisotropy in the matter distribution beyond the baryonic acoustic oscillation scale

    Full text link
    Tracing the cosmic evolution of the Baryonic Acoustic Oscillation (BAO) scale with galaxy two point correlation functions is currently the most promising approach to detect dark energy at early times. A number of ongoing and future experiments will measure the BAO peak with unprecedented accuracy. We show based on a set of N-Body simulations that the matter distribution is anisotropic out to ~150 Mpc/h, far beyond the BAO scale of ~100M pc/h, and discuss implications for the measurement of the BAO. To that purpose we use alignment correlation functions, i.e., cross correlation functions between high density peaks and the overall matter distribution measured along the orientation of the peaks and perpendicular to it. The correlation function measured along (perpendicular to) the orientation of high density peaks is enhanced (reduced) by a factor of ~2 compared to the conventional correlation function and the location of the BAO peak shifts towards smaller (larger) scales if measured along (perpendicular to) the orientation of the high density peaks. Similar effects are expected to shape observed galaxy correlation functions at BAO scales.Comment: 4 pages, 3 figures, accepted for publication in ApJ

    Analytical limit load predictions in heterogeneous welded single edge notched tension specimens

    Get PDF
    The integrity assessment of defected welds is dependent on accurate estimations of their load carrying capacity. As welds consist of variable microstructures, a large degree of heterogeneity is to be expected. The variation of constitutive properties within the weld influences the deformation patterns around the crack and, as a consequence, the load bearing capacity of the joint. Constitutive heterogeneity is simplified in standardized assessments in order to facilitate the analysis and reduce the complexity of its required input. However, these weld simplifications may lead to inaccurate assessments with unknown errors. This motivates the work of the authors, which aims to include the effects of weld heterogeneity into integrity assessment procedures. The presented paper focuses on the prediction of limit load, which allows to calculate the structure’s proximity to plastic collapse. Simplified theorems have been developed to identify lower and upper bound values of limit load. This work explores the predictive accuracy of various methods to estimate the limit load of heterogeneous welds, including lower and upper bound theorems. A parametric study involves 2D plane strain simulations of single-edge notched tension (SE(T)) specimens. Welds consisting of two regions of different material properties (at the root and at the cap) are introduced. The obtained estimations of limit load are then compared against the simulated limit loads

    An adaptive weighting based on modified DOP for collaborative indoor positioning

    Get PDF
    Indoor localisation has always been a challenging problem due to poor Global Navigation Satellite System (GNSS) availability in such environments. While inertial measurement sensors have become popular solutions for indoor positioning, they suffer large drifts after initialisation. Collaborative positioning enhances positioning robustness by integrating multiple localisation information, especially relative ranging measurements between local users and transmitters. However, not all ranging measurements are useful throughout the whole positioning process and integrating too much data will increase the computation cost. To enable a more reliable positioning system, an adaptive collaborative positioning algorithm is proposed which selects units for the collaborative network and integrates ranging measurement to constrain inertial measurement errors. The algorithm selects the network adaptively from three perspectives: the network geometry, the network size and the accuracy level of the ranging measurements between the units. The collaborative relative constraint is then defined according to the selected network geometry and anticipated measurement quality. In the case of trials with real data, the positioning accuracy is improved by 60% by adjusting the range constraint adaptively according to the selected network situation, while also improving the system robustness

    Numerical estimation of entropy loss on dimerization: improved prediction of the quaternary structure of the GCN4 leucine zipper

    Get PDF
    A lattice based model of a protein is used to study the dimerization equilibrium of the GCN4 leucine zipper. Replica exchange Monte Carlo is used to determine the free energy of both the monomeric and dimeric forms as a function of temperature. The method of coincidences is then introduced to explicitly calculate the entropy loss associated with dimerization, and from it the free energy difference between monomer and dimer, as well as the corresponding equilibrium reaction constant. We find that the entropy loss of dimerization is a strong function of energy (or temperature), and that it is much larger than previously estimated, especially for high energy states. The results confirm that it is possible to study the dimerization equilibrium of GCN4 at physiological concentrations within the reduced representation of the protein employed

    A one-dimensional hemodynamic model of the coronary arterial tree

    Get PDF
    One-dimensional (1D) hemodynamic models of arteries have increasingly been applied to coronary circulation. In this study, we have adopted flow and pressure profiles in Olufsen's 1D structured tree as coronary boundary conditions, with terminals coupled to the dynamic pressure feedback resulting from the intra-myocardial stress because of ventricular contraction. We model a trifurcation structure of the example coronary tree as two adjacent bifurcations. The estimated results of blood pressure and flow rate from our simulation agree well with the clinical measurements and published data. Furthermore, the 1D model enables us to use wave intensity analysis to simulate blood flow in the developed coronary model. Six characteristic waves are observed in both left and right coronary flows, though the waves' magnitudes differ from each other. We study the effects of arterial wall stiffness on coronary blood flow in the left circumflex artery (LCX). Different diseased cases indicate that distinct pathological reactions of the cardiovascular system can be better distinguished through Wave Intensity analysis, which shows agreement with clinical observations. Finally, the feedback pressure in terminal vessels and measurement deviation are also investigated by changing parameters in the LCX. We find that larger feedback pressure increases the backward wave and decreases the forward one. Although simplified, this 1D model provides new insight into coronary hemodynamics in healthy and diseased conditions. We believe that this approach offers reference resources for studies on coronary circulation disease diagnosis, treatment and simulation

    The Physical Origins of Entropy Production, Free Energy Dissipation and their Mathematical Representations

    Full text link
    A complete mathematical theory of nonequilibrium thermodynamics of stochastic systems in terms of master equations is presented. As generalizations of isothermal entropy and free energy, two functions of states play central roles: the Gibbs entropy SS and the relative entropy FF, which are related via the stationary distribution of the stochastic dynamics. SS satisfies the fundamental entropy balance equation dS/dt=ep−hd/TdS/dt=e_p-h_d/T with entropy production rate ep≄0e_p\ge 0 and heat dissipation rate hdh_d, while dF/dt=−fd≀0dF/dt=-f_d\le 0. For closed systems that satisfy detailed balance: Tep(t)=fd(t)Te_p(t)=f_d(t). For open system one has Tep(t)=fd(t)+Qhk(t)Te_p(t)=f_d(t)+Q_{hk}(t) where the housekeeping heat Qhk≄0Q_{hk}\ge 0 was first introduced in the phenomenological nonequilibrium steady state thermodynamics. Entropy production epe_p consists of free energy dissipation associated with spontaneous relaxation, fdf_d, and active energy pumping that sustains the open system QhkQ_{hk}. The amount of excess heat involved in the relaxation Qex=hd−Qhk=fd−T(dS/dt)Q_{ex}=h_d-Q_{hk} = f_d-T(dS/dt).Comment: 4 pages, no figure

    The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design and First Results

    Full text link
    VENGA is a large-scale extragalactic IFU survey, which maps the bulges, bars and large parts of the outer disks of 32 nearby normal spiral galaxies. The targets are chosen to span a wide range in Hubble types, star formation activities, morphologies, and inclinations, at the same time of having vast available multi-wavelength coverage from the far-UV to the mid-IR, and available CO and 21cm mapping. The VENGA dataset will provide 2D maps of the SFR, stellar and gas kinematics, chemical abundances, ISM density and ionization states, dust extinction and stellar populations for these 32 galaxies. The uniqueness of the VIRUS-P large field of view permits these large-scale mappings to be performed. VENGA will allow us to correlate all these important quantities throughout the different environments present in galactic disks, allowing the conduction of a large number of studies in star formation, structure assembly, galactic feedback and ISM in galaxies.Comment: 7 pages, 3 figures, proceedings of the "Third Biennial Frank N. Bash Symposium, New Horizons in Astronomy" held in Austin, TX, Oct. 2009. To be published in the Astronomical Society of the Pacific Conference Series, eds. L. Stanford, L. Hao, Y. Mao, J. Gree
    • 

    corecore