54 research outputs found

    Salting our Freshwater Lakes

    Get PDF
    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have \u3e1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L−1), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue

    LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Get PDF
    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems

    Data Descriptor : Long-term chloride concentrations in North American and European freshwater lakes

    Get PDF
    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.Peer reviewe

    LakeEnsemblR: an R package that facilitates ensemble modelling of lakes

    Get PDF
    Model ensembles have several benefits compared to single-model applications but are not frequently used within the lake modelling community. Setting up and running multiple lake models can be challenging and time consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we present an R package, LakeEnsemblR, that facilitates running ensembles of five different vertical one-dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input required by each model, and provides functions to run and calibrate the models. The outputs of the different models are compiled into a single file, and several post-processing operations are supported. LakeEnsemblR's workflow standardisation can simplify model benchmarking and uncertainty quantification, and improve collaborations between scientists. We showcase the successful application of LakeEnsemblR for two different lakes

    Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes

    Get PDF
    Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to model gas exchange with the atmosphere. Theoretical and empirically based models of k range in complexity from wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological Observatory Network (GLEON) to study how model choice of k influenced estimates of lake metabolism and gas exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were substantially different between models and, at an annual scale, resulted in significantly different estimates of lake metabolism and gas exchange with the atmosphere

    Of Ice and Men

    No full text
    Antarctic lakes are studied as sentinels of future change, for climate records contained in their sediments, and as habitats for the simple food webs that can exist in inhospitable environments. Understanding how lakes are formed and are sustained in response to landscape conditions is critical in addressing the aforementioned research themes. The hypothesis of my doctoral research is that lake ice can be used to reveal past climatic changes, and further our awareness of current changes in climate and water loss in Antarctica. I use geophysical techniques and long-term field measurements to quantify water balance and interpret the history of thick perennially ice covered lakes in the McMurdo Dry Valleys of Antarctica. This photo of Lake Miers and Adams Glacier in Miers Valley, Antarctica, encapsulates how lake ice (foreground) is the end of the water cycle, which once began as a glacier (background). In the image, your eye is drawn to the far-away glacier. When I look at the grandeur and beauty of a glacier, I find it difficult to forget the toll climate change has taken on these bodies of ice worldwide. Ice holds many secrets of the past, and will play an important role in our future

    Study Site

    No full text
    "My research at UIC focuses on physical limnology and hydrology in cold environments. This photo documents a reconnaissance flight to choose our study site at Lake Vida in the Dry Valleys of Antarctica. In the photo is UIC professor Peter Doran beneath a United States Antarctic Program B-212 helicopter, which is delivering our drill tent for the season. Our work at Lake Vida focuses on the geochemistry, microbiology, and hydrology of Lake Vida, which has a surface ice cover of at least 27 m. The research team has already shown that life exists even in this frozen environment! Over the next few months, we will be analyzing ice cores, brine samples, and recovered sediment to further understand the formation and continuation of life in Lake Vida.

    Geophysics, Water Balance, and History of Thick Perennial Ice Covers on Antarctic Lakes

    No full text
    Antarctic lakes are studied as sentinels of future change, for paleolimnological records contained in the sediments, and as habitats for the simple food webs that can exist in inhospitable environments. Understanding how lakes are formed and are sustained in response to landscape and climate conditions is critical in addressing the aforementioned research themes. This thesis is governed by the overarching hypothesis that an understanding of hydrologic and sediment transport processes associated with lake ice formation and preservation can be used to reveal past climatic changes, and further our awareness of current changes in climate and water balance in the McMurdo Dry Valleys of Antarctica. The first chapter focuses on water loss from closed basin lakes in Taylor Valley, Antarctica, and presents updated estimates of sublimation and ablation rates from long-term empirical measurements. The second and third chapters address the formation of Lake Vida, Antarctica. The former investigates the accretion of a 27 m ice cover, and considers the origin of thick sediment layers in the ice cover, and the latter uses two geophysical methods to quantify the extent and volume of the brine network in the subsurface beneath the lake. The results presented herein advance the study of hydrogeology in continuous permafrost, provide additional evidence for fluctuating climate states in the McMurdo Dry Valleys throughout the mid to late Holocene, and provide a case study for the preservation of water in a cold, desert environment analogous to neighboring planets

    The slow and steady salinization of Sparkling Lake, Wisconsin

    No full text
    The concentrations of conservative solutes in seepage lakes are determined by the relative inputs of precipitation vs. groundwater. In areas of road salt application, seepage lakes may be at high risk of salinization depending on groundwater flow. Here, we revisit a 1992 analysis on the salinization of Sparkling Lake, a deep seepage lake in Northern Wisconsin. The original analysis predicted a rapid increase in chloride concentrations before reaching a steady steady of 8 mg L−1 by 2020. Forty years of monitoring Sparkling Lake show that rather than reaching a dynamic equilibrium, chloride concentrations have steadily increased. We update the original box model approach by adding a soil reservoir component that shows the slow steady rise in chloride is the result of terrestrial retention. For freshwater rivers and lakes, chloride retention on the landscape will both delay chloride impairment and prolong recovery and must be considered when modeling future chloride contamination risk
    • …
    corecore